Tutorials
An introduction to Expectation Propagation (video lecture) (slides)
Video lectures on Approximate Inference
Expectation Propagation: CUED Tutorial slides
A family of algorithms
for approximate Bayesian inference
How to construct EP algorithms, illustrated with a variety of different
approximations and factor grouping schemes.
From Belief
Propagation to Expectation Propagation
K. Murphy, 2001
A quick skim of thesis Chapter 3, with some more derivations.
EP
Summary
E. Sudderth, 2002
An even shorter summary.
EP: A quick reference
A list of equations useful for constructing Gaussian EP algorithms.
Notes
on Minka's Expectation Propagation for Gaussian Process classification
M. Seeger, 2002
EP in practice
Extending expectation propagation for graphical models
Y. Qi, 2004
An overview of techniques used to implement EP in practice.
Expectation Propagation for Exponential Families
M. Seeger, 2007
Expectation propagation
J. Raymond, A. Manoel, and M. Opper, 2014
Theoretical developments
- The impact of different divergence measures
-
Divergence measures and message passing
- Raising factors to powers
-
Power EP
- Kikuchi approximation
-
Structured Region Graphs: Morphing EP into GBP
- Convergence control
-
Damping and skipping:
Expectation-Propagation for the Generative Aspect
Model
Double-loop:
Expectation propagation for approximate inference in dynamic Bayesian networks
T. Heskes and O. Zoeter, UAI'2002
- EP within EM
-
Expectation-Propagation for the Generative Aspect
Model
Predictive Automatic Relevance Determination by Expectation Propagation
- Sparse approximation
-
Gaussian Processes - Iterative Sparse Approximations
L. Csato, 2002
Sparse-posterior Gaussian Processes for general likelihoods
- The objective function
-
Expectation Propagation for approximate Bayesian
inference
The EP energy function and minimization
schemes
TAP Gibbs Free Energy,
Belief Propagation and Sparsity
L. Csato, M. Opper, and O. Winther, NIPS'2001
Expectation propagation for approximate inference in dynamic Bayesian networks
T. Heskes and O. Zoeter, UAI'2002
Approximate Inference Techniques with Expectation Constraints
T. Heskes, M. Opper, W. Wiegerinck, O. Winther and O. Zoeter,
Journal of Statistical Mechanics: Theory and Experiment, 11015 (2005)
- Perturbation Corrections
-
Approximate marginals in latent Gaussian models
B. Cseke, T. Heskes, JMLR 2011
Perturbation Corrections in Approximate Inference: Mixture Modelling Applications
Ulrich Paquet, Ole Winther, Manfred Opper, JMLR 2009
Perturbative Corrections for Approximate Inference in Gaussian Latent Variable Models
M. Opper, U. Paquet, and O. Winther, JMLR 2013
- Approximating the messages
-
Gaussian quadrature based expectation propagation
O. Zoeter and T. Heskes, AISTATS 2005
ABC-EP: Expectation Propagation for Likelihood-free Bayesian Computation
S. Barthelmé and N. Chopin, ICML 2011
Distributed Bayesian Posterior Sampling via Moment Sharing
M. Xu et al, NIPS 2014
Learning to Pass Expectation Propagation Messages
N. Heess, D. Tarlow, J. Winn, NIPS 2013
Just-In-Time Learning for Fast and Flexible Inference
S. M. Ali Eslami, D. Tarlow, P. Kohli, and J. Winn, NIPS 2014
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
W. Jitkrittum et al, UAI 2015
|
|
Uses of EP
- Perceptrons, Gaussian process classifiers
-
Assessing Approximate
Inference for Binary Gaussian Process Classification
M. Kuss and C. E. Rasmussen, JMLR 2005
Predictive Automatic Relevance Determination by Expectation Propagation
Fast Sparse
Gaussian Process Methods: The Informative Vector Machine
N. Lawrence, M. Seeger, and R. Herbrich, NIPS'2002
Gaussian Processes - Iterative Sparse Approximations
L. Csato, 2002
A family of algorithms
for approximate Bayesian inference
Gaussian Processes for Classification: Mean Field
Algorithms
M. Opper and O. Winther, Neural Computation 12: 2655-2684, 2000
Bayes Machines for Binary Classification
D. Hernández-Lobato and J.M. Hernández-Lobato, Pattern Recognition Letters 29(10): 1466-1473, 2008
Expectation Propagation for Microarray Data Classification
D. Hernández-Lobato, J.M. Hernández-Lobato, and A. Suárez, Pattern Recognition Letters 31(12): 1618-1626, 2010
Robust Multi-Class Gaussian Process Classification
D. Hernández-Lobato, J.M. Hernández-Lobato, and P. Dupont, NIPS 2011
Expectation Propagation for Bayesian Multi-task Feature Selection
D. Hernández-Lobato, J.M. Hernández-Lobato, T. Helleppute, and P. Dupont, PKDD 2010
Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
D. Hernández-Lobato, J.M. Hernández-Lobato, and P. Dupont, JMLR 2013
- Ordinal regression
-
Gaussian processes for ordinal regression
W. Chu and Z. Ghahramani, JMLR 2005
- Bayesian Conditional Random Fields
- Discrete Bayes nets and Markov random fields
-
Expectation Consistent Approximate Inference
M. Opper and O. Winther, JMLR 2005
Tree-structured approximations by expectation
propagation
- Density estimation with Gaussian processes
-
Gaussian Processes - Iterative Sparse Approximations
L. Csato, 2002
- Neural networks, Multilayer perceptrons
-
Computing with
Finite and Infinite Networks
O. Winther, NIPS'2001
(ADATAP)
Expectation Propagation for Neural Networks with Sparsity-promoting Priors
P. Jylänki, A. Nummenmaa and A. Vehtari, JMLR 2013
Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights
D. Soudry, I. Hubara and R. Meir, NIPS 2014
Probabilistic backpropagation for scalable learning of bayesian neural networks
J. M. Hernandez-Lobato and R. P. Adams, ICML 2015
- Independent Components Analysis (ICA)
-
TAP Gibbs Free Energy,
Belief Propagation and Sparsity
L. Csato, M. Opper, and O. Winther, NIPS'2001
Mean Field
Approaches to Independent Component Analysis
P. A.d.F.R. Højen-Sørensen, O. Winther, and L. K. Hansen,
Neural Computation 14: 889-918 (2002)
- Text modeling, latent Dirichlet allocation
-
Expectation-Propagation for the Generative Aspect
Model
- Hybrid dynamic systems (continuous + discrete state)
-
Expectation propagation for approximate inference in dynamic Bayesian networks
T. Heskes and O. Zoeter, UAI'2002
-
Window-based expectation propagation for adaptive signal detection in flat-fading channels
(Fixed-lag smoothing with EP)
- Nonlinear dynamic systems
-
Gaussian quadrature based expectation propagation
O. Zoeter and T. Heskes, AISTATS 2005
-
Expectation propagation for inference in non-linear dynamical models with Poisson observations
B. M. Yu, K. V. Shenoy, M. Sahani, NSSPW'2006
-
Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models
S. Koyama and L. Paninski, J Comp Neuroscience 2009
-
Iterated extended Kalman smoothing with Expectation-Propagation
A. Ypma and T. Heskes, NNSP'2003
- Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing
- S. Wu et al, 2014
- Bayesian Inference for Sparse Generalized Linear Models
- M. Seeger, S. Gerwinn, M. Bethge, ECML 2007
- Bayesian inference for Plackett-Luce ranking models
- J. Guiver, E. Snelson, ICML 2009
- A Distributed Message Passing Algorithm for Sensor Localization
- M. Welling and J. J. Lim, ICANN 2007
- Expectation Propagation for Continuous Time Bayesian Networks
- U. Nodelman, D. Koller, and C. R. Shelton, UAI 2005
- Visualization of time-series data
- Hierarchical visualization of time-series data using switching linear
dynamical systems
O. Zoeter and T. Heskes, PAMI 2003
- Expectation Propagation for Infinite Mixtures
-
|