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Bayesian paradigm 

• Consistent use of probability theory for 

representing unknowns (parameters, 

latent variables, missing data, choice of 

model) 

• Unifies the problems of prediction, state 

estimation, parameter estimation, model 

selection 

– All reduce to computing posterior marginals 

– Can be solved using the same algorithms 
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Factor graphs 

• Shows how a function of several variables 

can be factored into a product of simpler 

functions 

• f(x,y,z) = (x+y)(y+z)(x+z) 

𝑥 

𝑦 𝑧 

𝑥 

𝑦 𝑧 
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Example factor graph 

(Parameter estimation) 

𝑝 𝑥, 𝑦1, … , 𝑦𝑛 = 𝑝 𝑥  𝑝(𝑦𝑖|𝑥)

𝑖

 

𝑝 𝑦𝑖 𝑥 = 𝑁(𝑦𝑖; 𝑥, 1) 

𝑥 

𝑦1 𝑦2 𝑦3 

𝑝(𝑥) 

𝑝(𝑦𝑖|𝑥) 
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Example factor graph 

(Markov chain) 

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1  𝑝(𝑥𝑖|𝑥𝑖−1)

𝑖

 

𝑥1 𝑥2 𝑥3 

𝑝(𝑥1) 𝑝(𝑥2|𝑥1) 𝑝(𝑥3|𝑥2) 
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Jampani et al, AISTATS 2015 

𝛿(𝑠𝑖 − 𝒏𝒊 ∙ 𝒍) 
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Two tasks 

• Modeling 

– What graph should I use for this data? 

• Inference 

– Given the graph and data, what is the 
marginal of variable x? 

– Algorithms:  
• Monte Carlo 

• Variable elimination 

• Message-passing (Expectation Propagation, 
Variational Bayes, …) 

I will contrast this with “multi-stage inference” 7 



Multi-stage inference 

1. Draw samples from the model 

2. Using samples as training data, locally 

approximate each component of the model 

3. Combine the local approximations to form a 

surrogate model 

4. Perform exact inference in the surrogate model 

 

Seems to be popular in materials modeling.  How does it compare? 
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Multi-stage inference 

Pros: 

• Computation is amortized 

• Modular development and re-use 

Cons: 

• Brittle – must re-train when model changes in 

any way 

• Surrogate may miss crucial properties of the 

model 
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A simple example 
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Clutter problem 

• Want to estimate x given multiple y’s 

 

 

 

 

𝑝 𝑥 𝑦1, … , 𝑦𝑛

∝ 𝑝 𝑥  𝑝(𝑦𝑖|𝑥)

𝑖

 

2y

x

1y
3y
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Exact posterior 
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Multi-stage inference 

• Surrogate model: each factor 𝑝 𝑦𝑖 𝑥  is 

replaced with 𝑓𝑖 𝑥 = 𝑁 𝑥;𝑚 𝑦𝑖 , 𝑣 𝑦𝑖  

• Stage 1: Learn 𝑚, 𝑣 functions 

• Stage 2: Map data into Gaussian factors, 

multiply together to get posterior on x 

What could go wrong? 
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Multi-stage inference 

• Surrogate model no longer has the ability 

to reject outliers 

• Regardless of how m,v functions are tuned 
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Strategy 

• Each factor 𝑝 𝑦𝑖 𝑥  is replaced with 

𝑓𝑖 𝑥 = 𝑁 𝑥;𝑚𝑖 , 𝑣𝑖  

• (𝑚𝑖 , 𝑣𝑖) depend on 𝑦𝑖 and the current 

posterior on 𝑥 (excluding this factor) 

– Call this the context 

𝑞\i 𝑥 = 𝑝 𝑥  𝑓𝑗 (𝑥)

𝑗≠𝑖

 

𝑓𝑖 𝑥  is computed by divergence minimization 
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Global divergence to local divergence 

• Global divergence: 

 

 

 

• Local divergence: 
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Message passing 

• Messages are passed between factors 

• Messages are factor approximations: 

• Factor a receives            

– Minimize local divergence to get         

– Send to other factors 

– Repeat until convergence 
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Approximating a factor 

proj 𝑝 𝑥 = argmin𝑞∈𝑄𝐷(𝑝||𝑞) 

We want 𝑓𝑎 𝑥 𝑞\a 𝑥 = proj 𝑓𝑎 𝑥 𝑞\a 𝑥  

𝑓𝑎 𝑥 =
proj 𝑓𝑎 𝑥 𝑞\a 𝑥

𝑞\a(𝑥)
 Therefore 
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Divergence measures 

• KL divergence: 

𝐷(𝑝| 𝑞 =  𝑝 𝑥 log 
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑥
 

• Minimizing KL over Gaussians reduces to 

matching the mean and variance of 𝑝(𝑥) 

• KL can be replaced with other measures, 

usually to increase efficiency 
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Gaussian multiplication formula 

22 



Approximation changes with context 
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Gaussian found by EP 
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Accuracy 

Posterior mean: 

  exact    = 1.649 

  ep         = 1.645 

  laplace = 1.619 

  vb         = 1.618 

    

Posterior variance: 

  exact    = 0.360 

  ep         = 0.311 

  laplace = 0.235 

  vb         = 0.171 
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Cost vs. accuracy 

20 points 200 points 

Deterministic methods improve with more data (posterior is more Gaussian) 

Sampling methods do not 
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Parallel processing 

𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦1 𝑦2 𝑦3 

𝑥 
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Parallel processing 

= 

𝑥2
𝑐 

𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦1 𝑦2 𝑦3 

𝑥3
𝑐 𝑥1

𝑐 

𝑥 

= = 

Processor 1 Processor 2 Processor 3 
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Time series problems 
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Example: Poisson tracking 

• yt is a Poisson-distributed integer with      

mean exp(xt) 
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Poisson tracking model 

)01.0,(~)|( 11  ttt xNxxp

)100,0(~)( 1 Nxp

!/)exp()|( t

x

tttt yexyxyp t
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Factor graph 

1y 2y
3y 4y

1x 2x 3x 4x

1x 2x 3x 4x
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Approximating a measurement 

factor 

1y

1x

1x

𝑃𝑜(𝑦1; 𝑒
𝑥1) 

𝑁(𝑥1;𝑚1, 𝑣1) 

𝑁 𝑥1;𝑚1, 𝑣1 =
proj[𝑃𝑜 𝑦1; 𝑒

𝑥1 𝑞1𝐵 𝑥1 𝑝(𝑥1)]

𝑞1𝐵 𝑥1 𝑝(𝑥1)
 

𝑞1𝐵(𝑥1) 

𝑞1𝐵(𝑥1) 

𝑝(𝑥1) 

𝑝(𝑥1) Implementation: 1D quadrature 
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Posterior for the last state 
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Learning graph structure 

Goals: 

1. Learn latent variables (Z) that explain observed data 

2. Learn sparse connectivity between Z and observed variables 

“Structural Expectation Propagation”, Lazic et al, AISTATS 2013 
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Lazic et al, AISTATS 2013 39 



Results 

Lazic et al, AISTATS 2013 40 



Enhancing EP 
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Improving accuracy by conditioning 

Cseke and Heskes, JMLR 2011 

• Run EP multiple times with 

different values of a variable, 

then interpolate the results 

 

• Can be done efficiently by 

exploiting previous factor 

approximations 
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Learning to initialize message passing 

Jampani et al, AISTATS 2015 

1. Sample from model 

 

2. Train a regressor to 

predict r from x 

 

3. Train a regressor to 

predict L from s 

 

4. Given new image, do 

one upward sweep 

using the regressors 

 

5. Run message-passing 

from this starting point 

43 



Learning to pass messages 

Eslami et al, NIPS 2014 

Jitkrittum et al, UAI 2015 

1. Start with a slow 

implementation of EP 

 

2. Collect (input,output) pairs 

of messages at a factor 

 

3. Train a regressor to 

predict the output 

message 

 

4. For inputs where the 

regressor is confident, use 

its output instead 
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Benefits of learned messages 

• Amortizes cost of divergence minimization 

• Large subgraphs, e.g. cycles, can be 

processed in one step 

• Can use unusual divergence measures 

• Can pass non-Gaussian (non-Exp Family) 

messages 
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Probabilistic Backpropagation 

• EP with fast approximate divergence 

minimization 

• Allows Bayesian learning of multilayer 

neural nets 

Hernandez-Lobato and  

Adams, ICML 2015 
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Further reading 

• Divergence measures and message passing 
http://research.microsoft.com/~minka/papers/message-passing/ 

 

• EP bibliography  
http://research.microsoft.com/~minka/papers/ep/roadmap.html 

 

• Infer.NET software 
http://research.microsoft.com/infernet 
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