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tA 
entral issue in prin
ipal 
omponent analysis (PCA) is 
hoosing the number of prin
ipal 
omponents tobe retained. By interpreting PCA as density estimation, this paper shows how to use Bayesian model sele
tionto determine the true dimensionality of the data. The resulting estimate is simple to 
ompute yet guaranteedto pi
k the 
orre
t dimensionality, given enough data. The estimate involves an integral over the Steifelmanifold of k-frames, whi
h is diÆ
ult to 
ompute exa
tly. But after 
hoosing an appropriate parameterizationand applying Lapla
e's method, an a

urate and pra
ti
al estimator is obtained. In simulations, it is morea

urate than 
ross-validation and other proposed algorithms, plus it runs mu
h faster.1 Introdu
tionPrin
ipal 
omponent analysis (PCA) de
omposes high-dimensional data into a low-dimensional subspa
e 
ompo-nent and a noise 
omponent. This de
omposition is useful for data 
ompression as well as de-noising, making ita 
ommon �rst step for many data pro
essing tasks. Tipping & Bishop (1997b) have shown that PCA 
an be in-terpreted as maximum-likelihood density estimation. This paper extends their work by applying Bayesian modelsele
tion to the probabilisti
 PCA model, providing a simple and fast 
riterion for 
hoosing the dimensionalityof the subspa
e.2 Probabilisti
 PCAThis se
tion reviews the results of Tipping & Bishop (1997b). The model is that a high-dimensional randomve
tor x 
an be expressed as a linear 
ombination of basis ve
tors plus noise:x = kXj=1 hjwj +m+ e (1)= Hw +m+ e (2)p(e) � N (0;V) (3)where x has length d and w has smaller length k. The ve
tor m de�nes the mean of x, while H and V de�neits varian
e. For PCA, the noise varian
e V is spheri
al:V = vId (4)And the density of w is spheri
al Gaussian: p(w) � N (0; Ik) (5)This model for PCA was also dis
ussed by Moghaddam & Pentland (1995) and Roweis (1997). It is dire
tlyrelated to fa
tor analysis: the only di�eren
e is that, in fa
tor analysis, the noise varian
eV is a general diagonalmatrix. 1



The goal of PCA is to estimate the basis ve
torsH and the noise varian
e v from a data set D = fx1; :::;xNg.Under the model, the probability of observing a ve
tor x isp(xjw;H;m; v) � N (Hw +m; vI) (6)p(xjH;m; v) = Zw p(xjw;H;m; v)p(w) (7)� N (m;HHT + vI) (8)The probability of the data set is thereforep(DjH;m; v) = Yi p(xijH;m; v) (9)= (2�)�Nd=2 ��HHT + vI���N=2 exp(�12tr((HHT + vI)�1S)) (10)S = Xi (xi �m)(xi �m)T (11)Regardless of H and V, the maximum-likelihood value of m is obviously the sample mean:m̂ = 1N Xi xi (12)As shown by Tipping & Bishop (1997b), the maximum of (10) overH o

urs at the eigenve
tors of the 
ovarian
ematrix S=N , weighted by the eigenvalues and subje
t to an arbitrary rotation within the subspa
e. Spe
i�
ally,Ĥ = U(�k � vIk)1=2R (13)where orthogonal matrix U 
ontains the top k eigenve
tors of S=N , diagonal matrix �k 
ontains the 
orrespond-ing eigenvalues, and R is an arbitrary orthogonal matrix. The square root operation is safe be
ause �j � v willturn out to be positive when we estimate v. For this 
hoi
e of H, the likelihood redu
es top(DjH = Ĥ;m; v) = (2�)�Nd=20� kYj=1 �j1A�N=2 v�N(d�k)=2 exp(�N2v dXj=k+1 �j) exp(�Nk2 ) (14)where �j is the jth eigenvalue of S=N . From this formula the maximum-likelihood noise varian
e is seen to bethe average of the left-out eigenvalues: v̂ = Pdj=k+1 �jd� k (15)so the maximized likelihood is simplyp(DjH = Ĥ;m; v = v̂) = (2�)�Nd=20� kYj=1 �j1A�N=2 v̂�N(d�k)=2 exp(�Nd2 ) (16)At these parameter values, the 
ovarian
e matrix of x is Ud�̂UTd where Ud 
ontains all the eigenve
tors of S=Nand �̂ = ��k 00 vId�k� (17)In other words, it is the maximum likelihood estimate of 
ovarian
e, but with the smallest d� k eigenvalues setto their average. The PCA model is equivalent to an equality 
onstraint among the d� k smallest eigenvalues.2



p(D | M)

D

constrained model

flexible model

flexible
model wins
constrained

model winsFigure 1: Why Bayesian model sele
tion prefers simpler models3 Bayesian model sele
tionBayesian model sele
tion uses the rules of probability theory to sele
t among di�erent hypotheses. It is 
ompletelyanalogous to Bayesian 
lassi�
ation. It automati
ally en
odes a preferen
e for simpler, more 
onstrained models,as illustrated in �gure 1. Simple models, e.g. linear regression, only �t a small fra
tion of data sets. But theyassign 
orrespondingly higher probability to those data sets. Flexible models spread themselves out more thinly.The probability of the data given the model is 
omputed by integrating over the unknown parameter valuesin that model: p(DjM) = Z� p(Dj�)p(�jM)d� (18)This quantity is 
alled the eviden
e for model M . Ma
Kay (1995) and Kass & Raftery (1993) dis
uss Bayesianmodel sele
tion in detail. A useful property of Bayesian model sele
tion is that it is guaranteed to sele
t the truemodel, if it is among the 
andidates, as the size of the dataset grows to in�nity.3.1 The eviden
e for probabilisti
 PCAFor the PCA model, we want to sele
t the subspa
e dimensionality k. To do this, we 
ompute the probabilityof the data for ea
h possible dimensionality. For a given dimensionality, this requires integrating over all PCAparameters (m;H; v). First we need to de�ne a prior density for these parameters. Assuming there is noinformation other than the data D, the prior should be as noninformative as possible. A noninformative priorfor m is uniform: p(m) = (
onstant) (19)The 
onstant depends on the prior range we 
hoose for m. But sin
e this 
onstant has no in
uen
e on modelsele
tion, we 
an let m range over the entire spa
e and assume the 
onstant is 1. With this prior, m 
an beintegrated out analyti
ally, leavingp(DjH; v) = N�d=2(2�)�(N�1)d=2 ��HHT + vI���(N�1)=2 exp(�12tr((HHT + vI)�1S)) (20)where S = Xi (xi � m̂)(xi � m̂)T (21)
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Unlike m, H must have a proper prior sin
e it varies in dimension for di�erent models. Let H be de
omposedjust as in (13): H = U(L � vIk)1=2R (22)UTU = Ik (23)RTR = Ik (24)where L is diagonal with diagonal elements li. The orthogonal matrix U is the basis, L is the s
aling (
orre
tedfor noise), and R is a rotation within the subspa
e (whi
h will turn out to be irrelevant).A 
onjugate prior for (U;L;R; v), parameterized by (�; �), isp(U;L;R; v) / jLj�1 v�1 ��HHT + vI����=2 exp(��2 tr((HHT + vI)�1)) (25)/ jLj�(�+2)=2 v��(d�k)=2�1 exp(��2 tr(L�1)) exp(��(d� k)2v ) (26)This distribution fa
tors into separate terms for (U;L;R; v), whi
h means they are a-priori independent:p(U;L;R; v) = p(v)p(U)p(R) kYi=1 p(li) (27)p(v) � ��2(�(d � k); �(d� k)) (28)= 1�(�(d � k)=2)v ��(d� k)2v ��(d�k)=2 exp(��(d� k)2v ) (29)p(U)p(R) = (
onstant|de�ned in (52)) (30)p(li) � ��2(�; �) (31)= 1�(�=2)li � �2li��=2 exp(� �2li ) (32)The hyperparameters (�; �) 
ontrol the sharpness of the prior. For a noninformative prior, (�; �) should besmall, making the prior di�use. The prior (27) does not enfor
e li > v, but the likelihood will rule out su
hsituations.Combining the likelihood with the prior givesp(Djk) = 
k ZU;L;v jLj�1 v�1 ��HHT + vI���n=2 exp(�12tr((HHT + vI)�1(S+ �I))) dUdLdv (33)n = N � 1 + � (34)
k = N�d=2(2�)�(N�1)d=2p(U)�(�(d � k)=2)�(�=2)k ��(d � k)2 ��(d�k)=2��2��k=2 (35)In this formulaR has already been integrated out; the likelihood does not involveR so we just get a multipli
ativefa
tor of RR p(R) dR = 1.3.2 Lapla
e approximationIt is possible to integrate (33) over L and v analyti
ally. However, this leads to a 
ompli
ated integral for U. Asimpler approa
h is to approximate the whole integral using Lapla
e's method (see Kass & Raftery (1993) for ades
ription of Lapla
e's method): Z f(�)d� � f(�̂)(2�)rows(A)=2 jAj�1=2 (36)�̂ = argmax� f(�) A = � �d2 log f(�)d�id�j ��=�̂ (37)4



For (33), we 
ould 
hoose � ?= (U;L; v) so thatlog f(�) ?= (�n2 � 1) log jLj+ (�n(d� k)2 � 1) log(v) � 12tr((HHT + vI)�1(S+ �I)) (38)However, better results are obtained by �rst 
hanging variables in the integral from (U;L; v) to (Z; L̂; v̂). Sin
eli and v are positive s
ale parameters, it is best to use l0i = log(li) and v0 = log(v). This transformation hasJa
obian Jl0!l = li and Jv0!v = v. For U we will reparameterize with Z as des
ribed below. In this 
ase� = (Z; L̂; v̂) andlog f(�) = �n2 log jLj � n(d� k)2 log(v) + log JZ!U � 12tr((HHT + vI)�1(S+ �I)) (39)This expression 
an be simpli�ed using the identity(HHT + vI)�1 � v�1I = �(HHT + vI)�1HHTv�1 = U(L�1 � v�1I)UT (40)whi
h gives�12tr((HHT + vI)�1(S+ �I)) = � 12v tr(S+ �I)� 12tr((L�1 � v�1I)UT(S+ �I)U) (41)= � tr(S) � tr(UTSU) + �(d� k)2v � 12tr(L�1(UTSU+ �Ik)) (42)Now we need to determine �̂ and A in this parameterization. The derivatives with respe
t to l0i at the maximum-likelihood value of U are d log f(�)dl0i = �n2 + N�i + �2li (43)d2 log f(�)(dl0i)2 = �N�i + �2li (44)whi
h determine l̂i = (N�i + �)=n (45)d2 log f(�)(dl0i)2 �����=�̂ = �n2 (46)where �i is the ith eigenvalue of S=N . The derivatives with respe
t to v0 = log(v) are (using (42))d log f(�)dv0 = �n(d� k)2 + tr(S)� tr(UTSU) + �(d� k)2v (47)d2 log f(�)(dv0)2 = � tr(S)� tr(UTSU) + �(d� k)2v (48)whi
h determine v̂ = tr(S)� tr(UTSU) + �(d� k)n(d� k) = Pdj=k+1(N�j + �)n(d� k) (49)d2 log f(�)(dv0)2 �����=�̂ = �n(d� k)2 (50)At these estimates we havelog f(�̂) = �n2 log ���L̂���� n(d� k)2 log(v̂)� n(d� k)2 � nk2 (51)5



The matrix U is an orthogonal k-frame and therefore lives on the Stiefel manifold (James, 1954), whi
h isde�ned by 
ondition (23). The dimension of the manifold is m = dk�k(k+1)=2, sin
e we are imposing k(k+1)=2
onstraints on a d � k matrix. The prior density for U is therefore the re
ipro
al of the area of the manifold(James, 1954): p(U) = 2�k kYi=1�((d� i+ 1)=2)��(d�i+1)=2 (52)The manifold 
an be parameterized by Euler ve
tor 
oordinates:U = Ud exp(Z) �Ik0 � (53)where Ud is a �xed orthogonal matrix and Z is a skew-symmetri
 matrix of parameters, e.g.Z = 24 0 z12 z13�z12 0 z23�z13 �z23 0 35 (54)The free parameters in this matrix are the top k rows of the upper triangle, i.e. the entries zij with i < j andi � k; the others are 
onstant. This gives d(d � 1)=2 � (d � k)(d � k � 1)=2 = m parameters, as desired. Forexample, in the 
ase (d = 3; k = 1) the free parameters are z12 and z13, whi
h de�ne a 
oordinate system for thesphere.Using (40) we �nd that as a fun
tion of U, the integrand is simplyp(UjD;L; v) / exp(�12tr((L�1 � v�1I)UTSU)) (55)This distribution was studied by Bingham (1974) for the 
ase (d = 3; k = 1), where it is a distribution overthe sphere. Figure 2 plots a typi
al instan
e of this distribution. The generalization to the Stiefel manifoldwas mentioned by Khatri & Mardia (1977) and is known as the matrix Bingham distribution. The density ismaximized when U 
ontains the top k eigenve
tors of S. However, the density is un
hanged if we negate any
olumn of U. This means that there are a
tually 2k di�erent maxima, and we need to apply Lapla
e's methodto ea
h. Fortunately, these maxima are identi
al so 
an simply multiply (36) by 2k to get the integral over thewhole manifold. If we set Ud to the eigenve
tors of S:UTd SUd = N� (56)then we just need to apply Lapla
e's method at Z = 0.The 
hange of variables from U to Z requires a Ja
obian JZ!U. This Ja
obian is non-trivial but turns outto be 1 when Z = 0. Sin
e we are only interested in the behavior around Z = 0, we will ignore the 
ontributionof this Ja
obian when applying Lapla
e's method.Sin
e exp(Z) = I+ Z+ 12Z2 + 16Z3 + � � � (57)the di�erential of U in Euler 
oordinates isdU = Ud(dZ + 12(ZdZ + dZZ) + 16(Z2dZ+ ZdZZ+ dZZ2) + � � � ) �Ik0 � (58)dUjZ=0 = UddZ �Ik0 � (59)The se
ond di�erential of U isd2U = Ud(0 + 12(dZ2 + dZ2) + 16(2ZdZ2 + 2dZZdZ + 2dZ2Z) + � � � ) �Ik0 � (60)d2U��Z=0 = UddZ2 �Ik0 � (61)6



z12

z1
3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2: The posterior distribution for the �rst prin
ipal 
omponent in three dimensions, 
ontour-plotted onthe sphere and in Euler 
oordinates. It is equivalent to 
onstraining a full-
ovarian
e Gaussian density to thesphere. Euler 
oordinates unwrap the sphere so that both modes, on opposite sides of the sphere, are visible.Therefore the di�erential of log f is d log f(�) = �tr((L�1 � v�1I)UTSdU) (62)and the se
ond di�erential isd2 log f(�) = �tr((L�1 � v�1I)dUTSdU) � tr((L�1 � v�1I)UTSd2U) (63)d2 log f(�)��Z=0 = �Ntr(�Ik0 � (L�1 � v�1I) �Ik0 �T dZT�dZ)�Ntr(dZ �Ik0 � (L�1 � v�1I) �Ik0 �T�dZ) (64)= �Ntr((BdZT + (dZ)B)�dZ) (65)= �Ntr(T�dZ) (66)where B = �Ik0 � (L�1 � v�1I) �Ik0 �T (a diagonal matrix) (67)T = BdZT + (dZ)B = (dZ)B�BdZ (68)tij = bjdzij � bidzij (69)If we de�ne the estimated eigenvalue matrix (analogous to (17))�̂ = �L̂ 00 v̂Id�k� (70)then the (i; j) element of T is tij = (�̂�1j � �̂�1i )dzij (71)Now exploit the fa
t that dzji = �dzij to getd2 log f(�)��Z=0 = � kXi=1 dXj=i+1(�̂�1j � �̂�1i )(�i � �j)Ndz2ij (72)Note that there are no 
ross derivatives; the Hessian matrix AZ is diagonal. So its determinant is the produ
tof these se
ond derivatives: jAZ j = kYi=1 dYj=i+1(�̂�1j � �̂�1i )(�i � �j)N (73)7



Lapla
e's method requires this to be nonsingular, so we must have k < N .The 
ross-derivatives between the parameters are all zero:d2 log f(�)dlidZ �����=�̂ = d2 log f(�)dvdZ �����=�̂ = d2 log f(�)dlidv �����=�̂ = 0 (74)so A is blo
k diagonal: A = 24AZ AL Av35 (75)jAj = jAZ j jALj jAv j (76)We know AL from (46), Av from (50), and AZ from (73). We now have all of the terms needed in (36), and sothe eviden
e approximation isp(Djk) � 2k
k ���L̂����n=2 v̂�n(d�k)=2 exp(�nd2 )(2�)(m+k+1)=2 jAZ j�1=2 jALj�1=2 jAvj�1=2 (77)= 2(3k+1)=2pd� k 
k0� kYj=1�j1A�n=2 v̂�n(d�k)=2 exp(�nd2 )(2�)(m+k+1)=2 jAZ j�1=2 n�(k+1)=2 (78)For model sele
tion, the only terms that matter are those that strongly depend on k, and sin
e (�; �) are smalland N reasonably large we 
an simplify as follows:
k � p(U) (see below) (79)p(Djk) � 23k=2p(U)0� kYj=1 �j1A�N=2 v̂�N(d�k)=2(2�)(m+k)=2 jAZ j�1=2N�k=2 (80)l̂i = �i v̂ = Pdj=k+1 �jd� k (81)whi
h is the re
ommended formula. Given the eigenvalues, the 
ost of 
omputing p(Djk) is O(min(d;N)k), whi
his less than one loop over the data matrix.A simpli�
ation of Lapla
e's method is the BIC approximation (Kass & Raftery, 1993). This approximationdrops all terms whi
h do not grow with N , whi
h in this 
ase leaves onlyp(Djk) � 0� kYj=1 �j1A�N=2 v̂�N(d�k)=2N�(m+k)=2 (82)This approximation is 
ompared to Lapla
e in se
tion 5.The approximation (79) simpli�es the eviden
e formula but does lead to a loss of a

ura
y, sin
e the normalizer
k 
an have a non-negligible dependen
e on k. A more a

urate approa
h would use the exa
t formula for 
k,and estimate the hyperparameters (�; �) by maximizing the eviden
e for ea
h k (see for example Minka (1999)).
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4 Other approa
hesRajan & Rayner (1997) perform model sele
tion on a slightly di�erent probabilisti
 PCA model. In fa
t theyhave two di�erent models|one with a Gaussian density in the subspa
e and one with a uniform density:x = Uw +m+ e (83)UTU = Ik (84)p(wj�) � N (0; I=�) (85)or p(wij�) � U(��; �) for all i (86)They also in
luded an assumption that U is smooth, whi
h we omit. Under this model, the 
ovarian
e of x isE[(x�m)(x�m)T℄ = �(��1 + v)Ik 00 vId�k� (87)or = �(�2=6 + v)Ik 00 vId�k� (88)This is di�erent sin
e it implies all subspa
e 
omponents have the same varian
e, i.e. the true eigenvalues are
onstant over �1; :::; �k as well as 
onstant over �k+1; :::; �d. For the �rst model, the probability of a data set isp(DjU;m; v; �) = (2�)�Nd=2 ����1UUT + vI���N=2 exp(�12tr((��1UUT + vI)�1S)) (89)= (2�)�Nd=2(��1 + v)�Nk=2v�N(d�k)=2 exp(� tr(S)2v + tr(UTSU)2v(1 + �v) ) (90)(be
ause (��1UUT + vI)�1 = v�1I � Uv�1(� + v�1)�1v�1UT). Rather than integrate over the parameters(U;m; v; �) to get the eviden
e, Rajan and Rayner suggest simply using the maximum of this likelihood formodel sele
tion. The maximum-likelihood value of U and m are the same as before. Rajan and Rayner give anapproximate formula for �̂ and v̂; the exa
t maximum-likelihood values arev̂ = Pdj=k+1 �jd� k (91)�̂�1 = Pkj=1 �jk � v̂ (92)whi
h gives the maximized likelihood (
f (16))p(DjÛ; m̂; v̂; �̂) = (2�)�Nd=2 Pkj=1 �jk !�Nk=2 v̂�N(d�k)=2 exp(�Nd2 ) (93)

9



We will 
all this the RR-N algorithm, with the 
aveat that it is not identi
al to what Rajan and Rayner proposed.For the se
ond model, the probability of a data set isp(DjU;m; v; �) = (2�v)�Nd=2(2�)�Nk NYi=1 Zw exp(� 12v (xi �m�Uw)T(xi �m�Uw))dw (94)= (2�v)�Nd=2(2�)�Nk exp(� tr(S)� tr(UTSU)2v )NYi=1 Zw exp(� 12v (w �UT(xi �m))T(w �UT(xi �m)))dw (95)= (2�v)�Nd=2(2�)�Nk exp(� tr(S)� tr(UTSU)2v )NYi=1 kYj=1p�v=2 erf  � � uTj (xi �m)p2v !� erf  �� � uTj (xi �m)p2v !! (96)(In this formula, an error of Rajan and Rayner has been 
orre
ted.) Rajan and Rayner estimate v and � withv̂ = Pdj=k+1 �jd� k (97)�̂ = maxj;i juTj (xi �m)j (98)We will 
all this the RR-U algorithm.Everson & Roberts (2000) also perform Bayesian model sele
tion on a slightly di�erent probabilisti
 PCAmodel. They use an approximate generative model for the observed eigenvalues, whi
h de
ouples as a fun
tionof the true eigenvalues: p(�jL; v) = dYj=1 kYi=1 fij((�j � li)=v) dYi=k+1 fij((�j � 0)=v) (99)The fij are d2 di�erent fun
tions relating ea
h observed eigenvalue to ea
h true eigenvalue. The eviden
e integralsimpli�es into k univariate integrals over li whi
h are evaluated numeri
ally. The noise varian
e v is not integratedout but 
hosen to maximize the eviden
e for ea
h dimensionality k; a 
hoi
e whi
h must be done numeri
ally.This te
hnique will be 
alled the ER algorithm.Bishop's (1998) algorithm is di�erent from the others in that it does not s
ore ea
h dimensionality but onlyreports the best dimensionality. It is an iterative estimation algorithm for H whi
h sets 
olumns to zero unlessthey are supported by the data. The number of nonzero 
olumns at 
onvergen
e is the estimate of dimensionality.The algorithm is based on Ma
Kay's (1995) automati
 relevan
e determination framework and so here it is 
alledthe ARD algorithm.5 ResultsTo test the performan
e of these various algorithms for model sele
tion, we 
an sample data from a known modeland see how often the 
orre
t dimensionality is re
overed. The seven estimators implemented and tested in thisstudy are Lapla
e's method (80), BIC (82), Rajan and Rayner's RR-N (93), RR-U (96), Everson and Roberts'ER algorithm, Bishop's ARD algorithm, and 5-fold 
ross-validation. In the latter method, the data set is dividedinto 5 equal parts, and in turn we use one part to test the PCA model �tted to the remaining parts. The s
orefor ea
h division is the log-probability assigned to the held-out data. The s
ore for a given dimensionality is theaverage s
ore a
ross the �ve divisions.Most of these estimators work ex
lusively from the eigenvalues of the sample 
ovarian
e matrix. The ex-
eptions are RR-U, 
ross-validation, and ARD; the latter two require diagonalizing a series of di�erent matri
es10




onstru
ted from the data. In our implementation, the algorithms are ordered from fastest to slowest as RR-N, BIC, Lapla
e, 
ross-validation, RR-U, ARD, and ER (ER is slowest be
ause of the numeri
al integrationsrequired). All of the estimators are guaranteed to re
over the true dimensionality for a large enough data set,ex
ept for RR-N and RR-U be
ause they use a restri
tive model for the subspa
e.The �rst experiment tests the data-ri
h 
ase where N >> d. The data is generated from a 10-dimensionalGaussian distribution with varian
e in 5 dire
tions given by [10 8 6 4 2℄ and varian
e 1 in the remaining 5dire
tions. Figure 3 plots the eigenvalues of the true 
ovarian
e matrix and the observed 
ovarian
e matrixfor one parti
ular realization of 100 samples. For ea
h 
hoi
e of dimensionality, �gure 4 plots the maximizedlikelihood and the s
ores given by the various estimators. Lapla
e, ER, and CV pi
k k = 5 for this set of data.BIC, RR-N, and ARD pi
k k = 4 while RR-U pi
ks k = 3. The results over 1000 repli
ations are reported in�gure 5. The di�eren
es between ER and Lapla
e are not statisti
ally signi�
ant. Results below the dashed lineare worse than Lapla
e with a signi�
an
e level of 95%.
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Rank

E
ig

en
va

lu
e

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Rank

E
ig

en
va

lu
e

True eigenvalues Observed eigenvaluesFigure 3: True vs. observed 
ovarian
e matrix eigenvalues for 100 points in 10 dimensions. The latent dimen-sionality is 5.
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Figure 5: The number of times ea
h estimator pi
ked the 
orre
t dimensionality in 1000 repli
ations. (d =10; k = 5; N = 100)The se
ond experiment tests the 
ase of sparse data and low noise. The dimensionality is d = 15; the varian
ein the �rst 5 dire
tions is the same but now the varian
e is 0:1 in the remaining 10 dire
tions. There are only 10data points. The results over 60 repli
ations are reported in �gure 6.
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Figure 6: The number of times ea
h estimator pi
ked the 
orre
t dimensionality in 60 repli
ations. (d = 15; k =5; N = 10)The third experiment tests the 
ase of high noise dimensionality. The data is generated from a 100-dimensionalGaussian distribution with varian
e in 5 dire
tions given by [10 8 6 4 2℄ and varian
e 1=4 in the remaining 95dire
tions. Figure 7 plots the eigenvalues of the true 
ovarian
e matrix and the observed 
ovarian
e matrix forone parti
ular realization of 60 samples. For ea
h 
hoi
e of dimensionality, �gure 8 plots the maximized likelihoodand the s
ores given by the various estimators. Noti
e that BIC, whi
h was derived as a large N approximation,is unreliable when the dimensionality is 
omparable to N . Fortunately, we 
an reje
t su
h solutions out of handif there is a 
lear peak elsewhere. The results over 1000 repli
ations are reported in �gure 9. The ER algorithmwas not run in this 
ase be
ause of its ex
essive 
omputation time for large d.
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Figure 9: The number of times ea
h estimator pi
ked the 
orre
t dimensionality in 1000 repli
ations. (d =100; k = 5; N = 60)
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Sin
e the data in these experiments really does follow the generative model, we should expe
t Bayesian modelsele
tion to be optimal. The Lapla
e approximation turns out to be ex
ellent; it is a 
onsistent top performer.Cross-validation is also a good performer, but it is expensive to 
ompute. The algorithms RR-N, RR-U, and ERare e�e
tive only under 
ertain 
onditions. The ARD algorithm does not give performan
e 
ommensurate withits expense. Furthermore, the algorithms based on s
oring 
an employ a smart sear
h algorithm for the best k,but ARD 
annot be a

elerated in a simple way.In an experiment where the true eigenvalues do not level o�, but 
ontinue downward, all of the estimatorspi
k the largest possible dimensionality, given a large enough dataset (ex
ept RR-N and RR-U be
ause of theirrestri
tive model). This unders
ores the fa
t that these estimators are for density estimation, i.e. a

uraterepresentation of the data, and are not ne
essarily appropriate for other purposes like redu
ing 
omputationor extra
ting salient features. For example, on a database of 301 fa
e images the Lapla
e eviden
e pi
ked120 dimensions, whi
h is far more than one would use for feature extra
tion. (This result also suggests thatprobabilisti
 PCA is not a good generative model for fa
e images.) A more appropriate use of these estimatorsis �tting di�erent PCA models to di�erent 
lasses, for use in Bayesian 
lassi�
ation (Moghaddam & Pentland,1997; Moghaddam et al., 1998).6 Future dire
tionsBayesian model sele
tion has been shown to provide ex
ellent performan
e when the assumed model is 
orre
tor partially 
orre
t. The evaluation 
riterion was the number of times the 
orre
t dimensionality was 
hosen. Itwould also be useful to evaluate the trained model with respe
t to its performan
e on new data. It is 
on
eivablethat a method like ARD, whi
h en
ompasses a soft blend between di�erent dimensionalities, might performbetter by this 
riterion than sele
ting one dimensionality.The probabilisti
 PCA model 
an be in
orporated into a larger probabilisti
 model, su
h as a mixture model(Tipping & Bishop, 1997a). Indeed, the ARD algorithm was designed for this purpose. A brute for
e approa
hto Bayesian model sele
tion would be impra
ti
al, sin
e we would need to try every 
ombination of mixture
omponent models. A more reasonable approa
h is to optimize ea
h 
omponent model in turn, holding theothers �xed. For a given mixture 
omponent, the Lapla
e formula (80) 
an be applied to the eigenvalues of thelo
al responsibility-weighted 
ovarian
e matrix (de�ned by Tipping & Bishop (1997a)).A
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