
M.I.T. Media Laboratory Pereptual Computing Setion Tehnial Report No. 514Automati hoie of dimensionality for PCAThomas P. MinkaMIT Media Laboratory, Vision and Modeling Group20 Ames Street; Cambridge, MA 02139tpminka�media.mit.eduDeember 29, 2000 (revised September 2, 2008)AbstratA entral issue in prinipal omponent analysis (PCA) is hoosing the number of prinipal omponents tobe retained. By interpreting PCA as density estimation, this paper shows how to use Bayesian model seletionto determine the true dimensionality of the data. The resulting estimate is simple to ompute yet guaranteedto pik the orret dimensionality, given enough data. The estimate involves an integral over the Steifelmanifold of k-frames, whih is diÆult to ompute exatly. But after hoosing an appropriate parameterizationand applying Laplae's method, an aurate and pratial estimator is obtained. In simulations, it is moreaurate than ross-validation and other proposed algorithms, plus it runs muh faster.1 IntrodutionPrinipal omponent analysis (PCA) deomposes high-dimensional data into a low-dimensional subspae ompo-nent and a noise omponent. This deomposition is useful for data ompression as well as de-noising, making ita ommon �rst step for many data proessing tasks. Tipping & Bishop (1997b) have shown that PCA an be in-terpreted as maximum-likelihood density estimation. This paper extends their work by applying Bayesian modelseletion to the probabilisti PCA model, providing a simple and fast riterion for hoosing the dimensionalityof the subspae.2 Probabilisti PCAThis setion reviews the results of Tipping & Bishop (1997b). The model is that a high-dimensional randomvetor x an be expressed as a linear ombination of basis vetors plus noise:x = kXj=1 hjwj +m+ e (1)= Hw +m+ e (2)p(e) � N (0;V) (3)where x has length d and w has smaller length k. The vetor m de�nes the mean of x, while H and V de�neits variane. For PCA, the noise variane V is spherial:V = vId (4)And the density of w is spherial Gaussian: p(w) � N (0; Ik) (5)This model for PCA was also disussed by Moghaddam & Pentland (1995) and Roweis (1997). It is diretlyrelated to fator analysis: the only di�erene is that, in fator analysis, the noise varianeV is a general diagonalmatrix. 1



The goal of PCA is to estimate the basis vetorsH and the noise variane v from a data set D = fx1; :::;xNg.Under the model, the probability of observing a vetor x isp(xjw;H;m; v) � N (Hw +m; vI) (6)p(xjH;m; v) = Zw p(xjw;H;m; v)p(w) (7)� N (m;HHT + vI) (8)The probability of the data set is thereforep(DjH;m; v) = Yi p(xijH;m; v) (9)= (2�)�Nd=2 ��HHT + vI���N=2 exp(�12tr((HHT + vI)�1S)) (10)S = Xi (xi �m)(xi �m)T (11)Regardless of H and V, the maximum-likelihood value of m is obviously the sample mean:m̂ = 1N Xi xi (12)As shown by Tipping & Bishop (1997b), the maximum of (10) overH ours at the eigenvetors of the ovarianematrix S=N , weighted by the eigenvalues and subjet to an arbitrary rotation within the subspae. Spei�ally,Ĥ = U(�k � vIk)1=2R (13)where orthogonal matrix U ontains the top k eigenvetors of S=N , diagonal matrix �k ontains the orrespond-ing eigenvalues, and R is an arbitrary orthogonal matrix. The square root operation is safe beause �j � v willturn out to be positive when we estimate v. For this hoie of H, the likelihood redues top(DjH = Ĥ;m; v) = (2�)�Nd=20� kYj=1 �j1A�N=2 v�N(d�k)=2 exp(�N2v dXj=k+1 �j) exp(�Nk2 ) (14)where �j is the jth eigenvalue of S=N . From this formula the maximum-likelihood noise variane is seen to bethe average of the left-out eigenvalues: v̂ = Pdj=k+1 �jd� k (15)so the maximized likelihood is simplyp(DjH = Ĥ;m; v = v̂) = (2�)�Nd=20� kYj=1 �j1A�N=2 v̂�N(d�k)=2 exp(�Nd2 ) (16)At these parameter values, the ovariane matrix of x is Ud�̂UTd where Ud ontains all the eigenvetors of S=Nand �̂ = ��k 00 vId�k� (17)In other words, it is the maximum likelihood estimate of ovariane, but with the smallest d� k eigenvalues setto their average. The PCA model is equivalent to an equality onstraint among the d� k smallest eigenvalues.2
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model winsFigure 1: Why Bayesian model seletion prefers simpler models3 Bayesian model seletionBayesian model seletion uses the rules of probability theory to selet among di�erent hypotheses. It is ompletelyanalogous to Bayesian lassi�ation. It automatially enodes a preferene for simpler, more onstrained models,as illustrated in �gure 1. Simple models, e.g. linear regression, only �t a small fration of data sets. But theyassign orrespondingly higher probability to those data sets. Flexible models spread themselves out more thinly.The probability of the data given the model is omputed by integrating over the unknown parameter valuesin that model: p(DjM) = Z� p(Dj�)p(�jM)d� (18)This quantity is alled the evidene for model M . MaKay (1995) and Kass & Raftery (1993) disuss Bayesianmodel seletion in detail. A useful property of Bayesian model seletion is that it is guaranteed to selet the truemodel, if it is among the andidates, as the size of the dataset grows to in�nity.3.1 The evidene for probabilisti PCAFor the PCA model, we want to selet the subspae dimensionality k. To do this, we ompute the probabilityof the data for eah possible dimensionality. For a given dimensionality, this requires integrating over all PCAparameters (m;H; v). First we need to de�ne a prior density for these parameters. Assuming there is noinformation other than the data D, the prior should be as noninformative as possible. A noninformative priorfor m is uniform: p(m) = (onstant) (19)The onstant depends on the prior range we hoose for m. But sine this onstant has no inuene on modelseletion, we an let m range over the entire spae and assume the onstant is 1. With this prior, m an beintegrated out analytially, leavingp(DjH; v) = N�d=2(2�)�(N�1)d=2 ��HHT + vI���(N�1)=2 exp(�12tr((HHT + vI)�1S)) (20)where S = Xi (xi � m̂)(xi � m̂)T (21)
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Unlike m, H must have a proper prior sine it varies in dimension for di�erent models. Let H be deomposedjust as in (13): H = U(L � vIk)1=2R (22)UTU = Ik (23)RTR = Ik (24)where L is diagonal with diagonal elements li. The orthogonal matrix U is the basis, L is the saling (orretedfor noise), and R is a rotation within the subspae (whih will turn out to be irrelevant).A onjugate prior for (U;L;R; v), parameterized by (�; �), isp(U;L;R; v) / jLj�1 v�1 ��HHT + vI����=2 exp(��2 tr((HHT + vI)�1)) (25)/ jLj�(�+2)=2 v��(d�k)=2�1 exp(��2 tr(L�1)) exp(��(d� k)2v ) (26)This distribution fators into separate terms for (U;L;R; v), whih means they are a-priori independent:p(U;L;R; v) = p(v)p(U)p(R) kYi=1 p(li) (27)p(v) � ��2(�(d � k); �(d� k)) (28)= 1�(�(d � k)=2)v ��(d� k)2v ��(d�k)=2 exp(��(d� k)2v ) (29)p(U)p(R) = (onstant|de�ned in (52)) (30)p(li) � ��2(�; �) (31)= 1�(�=2)li � �2li��=2 exp(� �2li ) (32)The hyperparameters (�; �) ontrol the sharpness of the prior. For a noninformative prior, (�; �) should besmall, making the prior di�use. The prior (27) does not enfore li > v, but the likelihood will rule out suhsituations.Combining the likelihood with the prior givesp(Djk) = k ZU;L;v jLj�1 v�1 ��HHT + vI���n=2 exp(�12tr((HHT + vI)�1(S+ �I))) dUdLdv (33)n = N � 1 + � (34)k = N�d=2(2�)�(N�1)d=2p(U)�(�(d � k)=2)�(�=2)k ��(d � k)2 ��(d�k)=2��2��k=2 (35)In this formulaR has already been integrated out; the likelihood does not involveR so we just get a multipliativefator of RR p(R) dR = 1.3.2 Laplae approximationIt is possible to integrate (33) over L and v analytially. However, this leads to a ompliated integral for U. Asimpler approah is to approximate the whole integral using Laplae's method (see Kass & Raftery (1993) for adesription of Laplae's method): Z f(�)d� � f(�̂)(2�)rows(A)=2 jAj�1=2 (36)�̂ = argmax� f(�) A = � �d2 log f(�)d�id�j ��=�̂ (37)4



For (33), we ould hoose � ?= (U;L; v) so thatlog f(�) ?= (�n2 � 1) log jLj+ (�n(d� k)2 � 1) log(v) � 12tr((HHT + vI)�1(S+ �I)) (38)However, better results are obtained by �rst hanging variables in the integral from (U;L; v) to (Z; L̂; v̂). Sineli and v are positive sale parameters, it is best to use l0i = log(li) and v0 = log(v). This transformation hasJaobian Jl0!l = li and Jv0!v = v. For U we will reparameterize with Z as desribed below. In this ase� = (Z; L̂; v̂) andlog f(�) = �n2 log jLj � n(d� k)2 log(v) + log JZ!U � 12tr((HHT + vI)�1(S+ �I)) (39)This expression an be simpli�ed using the identity(HHT + vI)�1 � v�1I = �(HHT + vI)�1HHTv�1 = U(L�1 � v�1I)UT (40)whih gives�12tr((HHT + vI)�1(S+ �I)) = � 12v tr(S+ �I)� 12tr((L�1 � v�1I)UT(S+ �I)U) (41)= � tr(S) � tr(UTSU) + �(d� k)2v � 12tr(L�1(UTSU+ �Ik)) (42)Now we need to determine �̂ and A in this parameterization. The derivatives with respet to l0i at the maximum-likelihood value of U are d log f(�)dl0i = �n2 + N�i + �2li (43)d2 log f(�)(dl0i)2 = �N�i + �2li (44)whih determine l̂i = (N�i + �)=n (45)d2 log f(�)(dl0i)2 �����=�̂ = �n2 (46)where �i is the ith eigenvalue of S=N . The derivatives with respet to v0 = log(v) are (using (42))d log f(�)dv0 = �n(d� k)2 + tr(S)� tr(UTSU) + �(d� k)2v (47)d2 log f(�)(dv0)2 = � tr(S)� tr(UTSU) + �(d� k)2v (48)whih determine v̂ = tr(S)� tr(UTSU) + �(d� k)n(d� k) = Pdj=k+1(N�j + �)n(d� k) (49)d2 log f(�)(dv0)2 �����=�̂ = �n(d� k)2 (50)At these estimates we havelog f(�̂) = �n2 log ���L̂���� n(d� k)2 log(v̂)� n(d� k)2 � nk2 (51)5



The matrix U is an orthogonal k-frame and therefore lives on the Stiefel manifold (James, 1954), whih isde�ned by ondition (23). The dimension of the manifold is m = dk�k(k+1)=2, sine we are imposing k(k+1)=2onstraints on a d � k matrix. The prior density for U is therefore the reiproal of the area of the manifold(James, 1954): p(U) = 2�k kYi=1�((d� i+ 1)=2)��(d�i+1)=2 (52)The manifold an be parameterized by Euler vetor oordinates:U = Ud exp(Z) �Ik0 � (53)where Ud is a �xed orthogonal matrix and Z is a skew-symmetri matrix of parameters, e.g.Z = 24 0 z12 z13�z12 0 z23�z13 �z23 0 35 (54)The free parameters in this matrix are the top k rows of the upper triangle, i.e. the entries zij with i < j andi � k; the others are onstant. This gives d(d � 1)=2 � (d � k)(d � k � 1)=2 = m parameters, as desired. Forexample, in the ase (d = 3; k = 1) the free parameters are z12 and z13, whih de�ne a oordinate system for thesphere.Using (40) we �nd that as a funtion of U, the integrand is simplyp(UjD;L; v) / exp(�12tr((L�1 � v�1I)UTSU)) (55)This distribution was studied by Bingham (1974) for the ase (d = 3; k = 1), where it is a distribution overthe sphere. Figure 2 plots a typial instane of this distribution. The generalization to the Stiefel manifoldwas mentioned by Khatri & Mardia (1977) and is known as the matrix Bingham distribution. The density ismaximized when U ontains the top k eigenvetors of S. However, the density is unhanged if we negate anyolumn of U. This means that there are atually 2k di�erent maxima, and we need to apply Laplae's methodto eah. Fortunately, these maxima are idential so an simply multiply (36) by 2k to get the integral over thewhole manifold. If we set Ud to the eigenvetors of S:UTd SUd = N� (56)then we just need to apply Laplae's method at Z = 0.The hange of variables from U to Z requires a Jaobian JZ!U. This Jaobian is non-trivial but turns outto be 1 when Z = 0. Sine we are only interested in the behavior around Z = 0, we will ignore the ontributionof this Jaobian when applying Laplae's method.Sine exp(Z) = I+ Z+ 12Z2 + 16Z3 + � � � (57)the di�erential of U in Euler oordinates isdU = Ud(dZ + 12(ZdZ + dZZ) + 16(Z2dZ+ ZdZZ+ dZZ2) + � � � ) �Ik0 � (58)dUjZ=0 = UddZ �Ik0 � (59)The seond di�erential of U isd2U = Ud(0 + 12(dZ2 + dZ2) + 16(2ZdZ2 + 2dZZdZ + 2dZ2Z) + � � � ) �Ik0 � (60)d2U��Z=0 = UddZ2 �Ik0 � (61)6
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Figure 2: The posterior distribution for the �rst prinipal omponent in three dimensions, ontour-plotted onthe sphere and in Euler oordinates. It is equivalent to onstraining a full-ovariane Gaussian density to thesphere. Euler oordinates unwrap the sphere so that both modes, on opposite sides of the sphere, are visible.Therefore the di�erential of log f is d log f(�) = �tr((L�1 � v�1I)UTSdU) (62)and the seond di�erential isd2 log f(�) = �tr((L�1 � v�1I)dUTSdU) � tr((L�1 � v�1I)UTSd2U) (63)d2 log f(�)��Z=0 = �Ntr(�Ik0 � (L�1 � v�1I) �Ik0 �T dZT�dZ)�Ntr(dZ �Ik0 � (L�1 � v�1I) �Ik0 �T�dZ) (64)= �Ntr((BdZT + (dZ)B)�dZ) (65)= �Ntr(T�dZ) (66)where B = �Ik0 � (L�1 � v�1I) �Ik0 �T (a diagonal matrix) (67)T = BdZT + (dZ)B = (dZ)B�BdZ (68)tij = bjdzij � bidzij (69)If we de�ne the estimated eigenvalue matrix (analogous to (17))�̂ = �L̂ 00 v̂Id�k� (70)then the (i; j) element of T is tij = (�̂�1j � �̂�1i )dzij (71)Now exploit the fat that dzji = �dzij to getd2 log f(�)��Z=0 = � kXi=1 dXj=i+1(�̂�1j � �̂�1i )(�i � �j)Ndz2ij (72)Note that there are no ross derivatives; the Hessian matrix AZ is diagonal. So its determinant is the produtof these seond derivatives: jAZ j = kYi=1 dYj=i+1(�̂�1j � �̂�1i )(�i � �j)N (73)7



Laplae's method requires this to be nonsingular, so we must have k < N .The ross-derivatives between the parameters are all zero:d2 log f(�)dlidZ �����=�̂ = d2 log f(�)dvdZ �����=�̂ = d2 log f(�)dlidv �����=�̂ = 0 (74)so A is blok diagonal: A = 24AZ AL Av35 (75)jAj = jAZ j jALj jAv j (76)We know AL from (46), Av from (50), and AZ from (73). We now have all of the terms needed in (36), and sothe evidene approximation isp(Djk) � 2kk ���L̂����n=2 v̂�n(d�k)=2 exp(�nd2 )(2�)(m+k+1)=2 jAZ j�1=2 jALj�1=2 jAvj�1=2 (77)= 2(3k+1)=2pd� k k0� kYj=1�j1A�n=2 v̂�n(d�k)=2 exp(�nd2 )(2�)(m+k+1)=2 jAZ j�1=2 n�(k+1)=2 (78)For model seletion, the only terms that matter are those that strongly depend on k, and sine (�; �) are smalland N reasonably large we an simplify as follows:k � p(U) (see below) (79)p(Djk) � 23k=2p(U)0� kYj=1 �j1A�N=2 v̂�N(d�k)=2(2�)(m+k)=2 jAZ j�1=2N�k=2 (80)l̂i = �i v̂ = Pdj=k+1 �jd� k (81)whih is the reommended formula. Given the eigenvalues, the ost of omputing p(Djk) is O(min(d;N)k), whihis less than one loop over the data matrix.A simpli�ation of Laplae's method is the BIC approximation (Kass & Raftery, 1993). This approximationdrops all terms whih do not grow with N , whih in this ase leaves onlyp(Djk) � 0� kYj=1 �j1A�N=2 v̂�N(d�k)=2N�(m+k)=2 (82)This approximation is ompared to Laplae in setion 5.The approximation (79) simpli�es the evidene formula but does lead to a loss of auray, sine the normalizerk an have a non-negligible dependene on k. A more aurate approah would use the exat formula for k,and estimate the hyperparameters (�; �) by maximizing the evidene for eah k (see for example Minka (1999)).
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4 Other approahesRajan & Rayner (1997) perform model seletion on a slightly di�erent probabilisti PCA model. In fat theyhave two di�erent models|one with a Gaussian density in the subspae and one with a uniform density:x = Uw +m+ e (83)UTU = Ik (84)p(wj�) � N (0; I=�) (85)or p(wij�) � U(��; �) for all i (86)They also inluded an assumption that U is smooth, whih we omit. Under this model, the ovariane of x isE[(x�m)(x�m)T℄ = �(��1 + v)Ik 00 vId�k� (87)or = �(�2=6 + v)Ik 00 vId�k� (88)This is di�erent sine it implies all subspae omponents have the same variane, i.e. the true eigenvalues areonstant over �1; :::; �k as well as onstant over �k+1; :::; �d. For the �rst model, the probability of a data set isp(DjU;m; v; �) = (2�)�Nd=2 ����1UUT + vI���N=2 exp(�12tr((��1UUT + vI)�1S)) (89)= (2�)�Nd=2(��1 + v)�Nk=2v�N(d�k)=2 exp(� tr(S)2v + tr(UTSU)2v(1 + �v) ) (90)(beause (��1UUT + vI)�1 = v�1I � Uv�1(� + v�1)�1v�1UT). Rather than integrate over the parameters(U;m; v; �) to get the evidene, Rajan and Rayner suggest simply using the maximum of this likelihood formodel seletion. The maximum-likelihood value of U and m are the same as before. Rajan and Rayner give anapproximate formula for �̂ and v̂; the exat maximum-likelihood values arev̂ = Pdj=k+1 �jd� k (91)�̂�1 = Pkj=1 �jk � v̂ (92)whih gives the maximized likelihood (f (16))p(DjÛ; m̂; v̂; �̂) = (2�)�Nd=2 Pkj=1 �jk !�Nk=2 v̂�N(d�k)=2 exp(�Nd2 ) (93)
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We will all this the RR-N algorithm, with the aveat that it is not idential to what Rajan and Rayner proposed.For the seond model, the probability of a data set isp(DjU;m; v; �) = (2�v)�Nd=2(2�)�Nk NYi=1 Zw exp(� 12v (xi �m�Uw)T(xi �m�Uw))dw (94)= (2�v)�Nd=2(2�)�Nk exp(� tr(S)� tr(UTSU)2v )NYi=1 Zw exp(� 12v (w �UT(xi �m))T(w �UT(xi �m)))dw (95)= (2�v)�Nd=2(2�)�Nk exp(� tr(S)� tr(UTSU)2v )NYi=1 kYj=1p�v=2 erf  � � uTj (xi �m)p2v !� erf  �� � uTj (xi �m)p2v !! (96)(In this formula, an error of Rajan and Rayner has been orreted.) Rajan and Rayner estimate v and � withv̂ = Pdj=k+1 �jd� k (97)�̂ = maxj;i juTj (xi �m)j (98)We will all this the RR-U algorithm.Everson & Roberts (2000) also perform Bayesian model seletion on a slightly di�erent probabilisti PCAmodel. They use an approximate generative model for the observed eigenvalues, whih deouples as a funtionof the true eigenvalues: p(�jL; v) = dYj=1 kYi=1 fij((�j � li)=v) dYi=k+1 fij((�j � 0)=v) (99)The fij are d2 di�erent funtions relating eah observed eigenvalue to eah true eigenvalue. The evidene integralsimpli�es into k univariate integrals over li whih are evaluated numerially. The noise variane v is not integratedout but hosen to maximize the evidene for eah dimensionality k; a hoie whih must be done numerially.This tehnique will be alled the ER algorithm.Bishop's (1998) algorithm is di�erent from the others in that it does not sore eah dimensionality but onlyreports the best dimensionality. It is an iterative estimation algorithm for H whih sets olumns to zero unlessthey are supported by the data. The number of nonzero olumns at onvergene is the estimate of dimensionality.The algorithm is based on MaKay's (1995) automati relevane determination framework and so here it is alledthe ARD algorithm.5 ResultsTo test the performane of these various algorithms for model seletion, we an sample data from a known modeland see how often the orret dimensionality is reovered. The seven estimators implemented and tested in thisstudy are Laplae's method (80), BIC (82), Rajan and Rayner's RR-N (93), RR-U (96), Everson and Roberts'ER algorithm, Bishop's ARD algorithm, and 5-fold ross-validation. In the latter method, the data set is dividedinto 5 equal parts, and in turn we use one part to test the PCA model �tted to the remaining parts. The sorefor eah division is the log-probability assigned to the held-out data. The sore for a given dimensionality is theaverage sore aross the �ve divisions.Most of these estimators work exlusively from the eigenvalues of the sample ovariane matrix. The ex-eptions are RR-U, ross-validation, and ARD; the latter two require diagonalizing a series of di�erent matries10



onstruted from the data. In our implementation, the algorithms are ordered from fastest to slowest as RR-N, BIC, Laplae, ross-validation, RR-U, ARD, and ER (ER is slowest beause of the numerial integrationsrequired). All of the estimators are guaranteed to reover the true dimensionality for a large enough data set,exept for RR-N and RR-U beause they use a restritive model for the subspae.The �rst experiment tests the data-rih ase where N >> d. The data is generated from a 10-dimensionalGaussian distribution with variane in 5 diretions given by [10 8 6 4 2℄ and variane 1 in the remaining 5diretions. Figure 3 plots the eigenvalues of the true ovariane matrix and the observed ovariane matrixfor one partiular realization of 100 samples. For eah hoie of dimensionality, �gure 4 plots the maximizedlikelihood and the sores given by the various estimators. Laplae, ER, and CV pik k = 5 for this set of data.BIC, RR-N, and ARD pik k = 4 while RR-U piks k = 3. The results over 1000 repliations are reported in�gure 5. The di�erenes between ER and Laplae are not statistially signi�ant. Results below the dashed lineare worse than Laplae with a signi�ane level of 95%.
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Figure 5: The number of times eah estimator piked the orret dimensionality in 1000 repliations. (d =10; k = 5; N = 100)The seond experiment tests the ase of sparse data and low noise. The dimensionality is d = 15; the varianein the �rst 5 diretions is the same but now the variane is 0:1 in the remaining 10 diretions. There are only 10data points. The results over 60 repliations are reported in �gure 6.
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Figure 6: The number of times eah estimator piked the orret dimensionality in 60 repliations. (d = 15; k =5; N = 10)The third experiment tests the ase of high noise dimensionality. The data is generated from a 100-dimensionalGaussian distribution with variane in 5 diretions given by [10 8 6 4 2℄ and variane 1=4 in the remaining 95diretions. Figure 7 plots the eigenvalues of the true ovariane matrix and the observed ovariane matrix forone partiular realization of 60 samples. For eah hoie of dimensionality, �gure 8 plots the maximized likelihoodand the sores given by the various estimators. Notie that BIC, whih was derived as a large N approximation,is unreliable when the dimensionality is omparable to N . Fortunately, we an rejet suh solutions out of handif there is a lear peak elsewhere. The results over 1000 repliations are reported in �gure 9. The ER algorithmwas not run in this ase beause of its exessive omputation time for large d.
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Figure 9: The number of times eah estimator piked the orret dimensionality in 1000 repliations. (d =100; k = 5; N = 60)
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Sine the data in these experiments really does follow the generative model, we should expet Bayesian modelseletion to be optimal. The Laplae approximation turns out to be exellent; it is a onsistent top performer.Cross-validation is also a good performer, but it is expensive to ompute. The algorithms RR-N, RR-U, and ERare e�etive only under ertain onditions. The ARD algorithm does not give performane ommensurate withits expense. Furthermore, the algorithms based on soring an employ a smart searh algorithm for the best k,but ARD annot be aelerated in a simple way.In an experiment where the true eigenvalues do not level o�, but ontinue downward, all of the estimatorspik the largest possible dimensionality, given a large enough dataset (exept RR-N and RR-U beause of theirrestritive model). This undersores the fat that these estimators are for density estimation, i.e. auraterepresentation of the data, and are not neessarily appropriate for other purposes like reduing omputationor extrating salient features. For example, on a database of 301 fae images the Laplae evidene piked120 dimensions, whih is far more than one would use for feature extration. (This result also suggests thatprobabilisti PCA is not a good generative model for fae images.) A more appropriate use of these estimatorsis �tting di�erent PCA models to di�erent lasses, for use in Bayesian lassi�ation (Moghaddam & Pentland,1997; Moghaddam et al., 1998).6 Future diretionsBayesian model seletion has been shown to provide exellent performane when the assumed model is orretor partially orret. The evaluation riterion was the number of times the orret dimensionality was hosen. Itwould also be useful to evaluate the trained model with respet to its performane on new data. It is oneivablethat a method like ARD, whih enompasses a soft blend between di�erent dimensionalities, might performbetter by this riterion than seleting one dimensionality.The probabilisti PCA model an be inorporated into a larger probabilisti model, suh as a mixture model(Tipping & Bishop, 1997a). Indeed, the ARD algorithm was designed for this purpose. A brute fore approahto Bayesian model seletion would be impratial, sine we would need to try every ombination of mixtureomponent models. A more reasonable approah is to optimize eah omponent model in turn, holding theothers �xed. For a given mixture omponent, the Laplae formula (80) an be applied to the eigenvalues of theloal responsibility-weighted ovariane matrix (de�ned by Tipping & Bishop (1997a)).AknowledgmentThis work was supported by the MIT Media Lab Digital Life Consortium.ReferenesBingham, C. (1974). An antipodally symmetri distribution on the sphere. Annals of Statistis, 2, 1201{1225.Bishop, C. (1998). Bayesian PCA. Neural Information Proessing Systems 11 (pp. 382{388).Everson, R., & Roberts, S. (2000). Inferring the eigenvalues of ovariane matries from limited, noisy data.IEEE Trans Signal Proessing, 48, 2083{2091.http://www.robots.ox.a.uk/~sjrob/Pubs/spetrum.ps.gz.James, A. (1954). Normal multivariate analysis and the orthogonal group. Annals of Mathematial Statistis,25, 40{75.Kass, R. E., & Raftery, A. E. (1993). Bayes fators and model unertainty (Tehnial Report 254). Universityof Washington. www.stat.washington.edu/teh.reports/tr254.ps.15
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