Machine Learning Summer School		Cambridge 2009
Probabilistic Programming
Some general hints and tips for completing this practical are given at the end of this worksheet.
Heights
This problem considers the height of a man and a woman selected at random from the UK population.
1. Open the Heights.sln solution in the Heights folder. Look at the program code (Heights.cs) and run it to display the prior distributions over the heights of the man and the woman. Notice that the random variables heightMan and heightWoman are declared as type Variable<double>, since they are double variables that we want to treat as random. The code engine.Infer(heightMan) returns the posterior distribution of heightMan. Console.WriteLine displays it.
2. After the heightMan and heightWoman statements, create a random variable isTaller which is true if the woman is taller than the man, otherwise false. This variable should have type Variable<bool>. Use Console.WriteLine and engine.Infer to display the distribution over this variable.
Hint: You can define isTaller in one line, by using the less than or greater than operators (< or >). When applied to double random variables (Variable<double>), the result will be a Boolean random variable (Variable<bool>).
3. Suppose that the woman is taller than the man. What is the distribution over the woman’s height now? And the distribution over the man’s height? (Infer.NET will approximate these distributions by the closest Gaussian.)
Hint: Observe the isTaller variable to be true, by setting isTaller.ObservedValue = true.
Handedness
The probability of being left handed is about 90% in the general population. Some people suggest that particular groups may a higher level of left-handedness e.g. those working in a technical discipline. In this part, you will estimate the probability that a summer school student is right-handed and compare this to the general population and to the summer school lecturers.
1. Open the Handedness.sln solution in the Handedness folder. Look at the program code in Handedness.cs. It represents a generative model for right-handedness, where each student is right-handed with probability 0.9. The variable isRightHanded is a random array of Booleans, one for each student. Notice how the array is allocated. See the quick reference at the end of this worksheet for the general syntax of creating random arrays. Run the code to infer the distribution of the array elements.
2. Save the existing probabilistic program in a comment and then change the sampling process to have an unknown probability of being right-handed. That is, make a double random variable probRightHanded which is sampled from a Beta distribution with parameters trueCount=0.72 and falseCount=0.08. A Beta distribution is a distribution over real numbers between 0 and 1. Change the definition of the array elements to be Bernoulli(probRightHanded) instead of Bernoulli(0.9). Display the distribution of probRightHanded as well as isRightHanded. What is the distribution of handedness now? Why?
3. Observe the variable isRightHanded to be the right-handedness of the students given by studentsData. You can do this without changing your generative model by setting isRightHanded.ObservedValue at the end. Remove the line that infers isRightHanded. What is the posterior distribution of probRightHanded?
4. We want to know if this sampling process with probRightHanded fits the data better than the original process. With probabilistic programming, we can do model selection via probabilistic if statements.
a. Create a Boolean random variable drawnFromGeneral with equal probability of being true or false.
b. Take the original definition of isRightHanded (from the general population, including the ForEach) and wrap it with Variable.If so that the code looks like:
using(Variable.If(drawnFromGeneral)) {
 …
}
c. Take your new definition of isRightHanded and wrap it with IfNot (equivalent to Else), so that the code looks like:
using(Variable.IfNot(drawnFromGeneral)) {
 …
}
Thus isRightHanded will now have two definitions, selected by drawnFromGeneral.
d. What is the posterior distribution of drawnFromGeneral?
5. Out of ten lecturers at this summer school, nine were found to be right-handed. According to the above model, what is the probability that the lecturers have a different probability of being right-handed than the general population?
6. How much are the students like the lecturers? Modify your program to select between the following two models: (1) the students and lecturers are drawn from the same unknown parameter, or (2) the students are drawn from an unknown parameter and the lecturers are drawn from an independent unknown parameter. Make sure that the two models use separate parameters. What is the posterior probability for the two models?

Take a break at this point, before starting the next exercise.

Counting
In this part, you will solve a problem in estimating the size of a population. This sort of problem arises in estimating the number of animals of a given species, the number of readers of a magazine, and so on. We will abstract the problem by referring to balls in an urn (Milch et al, 2005). Suppose an urn contains an unknown number of balls. Each ball has been randomly coloured blue or green, independently with equal probability of each colour. You can draw a random ball from the urn, observing its colour and replacing it. You cannot tell identically coloured balls apart.
1. Suppose you draw a random ball from the urn 10 times, replacing the ball each time. The ball is blue every time. What is the most likely number of balls in the urn? What is the distribution over the number of balls?
You can assume that the number of balls is uniformly distributed between 0 and 8. (We stop at 8 to make the output more readable).
Hint: You will need to write a probabilistic program that (a) simulates this generative process and then (b) constrains the process to match the observations. The Counting.sln solution in the Counting folder will give you a starting point. You'll need to define the following random variables: isBlue[ball] (for each ball, whether it is blue or not), ballIndex[draw] (for each draw, which ball was drawn), observedBlue[draw] (for each draw, was the ball blue). You’ll need to use the Variable.Switch and Variable.DiscreteUniform functions described in the quick reference. (For the version of Infer.NET in the Cambridge computer lab, use Variable.ConstrainTrue(observedBlue) instead of setting ObservedValue for this part.)
2. Suppose each observed colour is wrong 20% of the time. What is the new distribution over the number of balls? Has it changed in the way you would expect?
Try experimenting with the noise level. What happens if colours are wrong 50% of the time?
Hint: You can implement this noise model in two ways. The long way is to use Variable.If blocks (but this does not work in the version of Infer.NET installed in the computer lab). The short way is to create a variable switchedColour which is true 20% of the time, then generate the observed colour using Boolean operations. Namely, the observed colour is blue if the ball is blue and didn't switch colour, or the ball is green and did switch colour. For best accuracy, try to use as few Boolean operators as possible (see the quick reference) and mention each variable only once in the Boolean expression (this prevents loops in the graphical model).
3. Suppose 5 of the observations were blue and 5 were green. What is the most likely number of balls in the urn? What is the distribution over the number of balls? Does the answer make sense to you?

Hints and Tips
· To observe a Variable or VariableArray myVar, use myVar.ObservedValue = value. In case of a VariableArray, value is an ordinary array in the language.
· To create a VariableArray, you first allocate the array, and then fill it.
· To allocate an array, use Variable.Array(range), where range is a Range object specifying the size. To create a Range object, use new Range(size). (The VariableArray can only be indexed by the given range or a variable whose values come from the given range.)
· To fill the array with random variables (in this case, random Booleans):
using(Variable.ForEach(myRange)) {
 myArray[myRange] = Variable.Bernoulli(0.5);
}
· To fill the array with observed data, or observe an array that has already been filled:
myArray.ObservedValue = value;
· To index a VariableArray by a random integer index, wrap the indexing lines with using(Variable.Switch(index)) { body }. It is best to wrap as many lines as possible with the same Switch.
· Variable.DiscreteUniform(size) creates a random integer from 0 to (size-1). The size can itself be a random integer. Variable.DiscreteUniform(range) creates a random integer from 0 to (range.Size-1), and the integer can be used to index arrays.
· Operators on Boolean variables include: and (&), or (|), not (!), equal (==), not equal (!=).

The code for this practical is available at:
http://mlg.eng.cam.ac.uk/mlss09/material.htm
4

