Goals of Probabilistic Programming

- Make it easier to do probabilistic inference in custom models
- If you can write the model as a program, you can do inference on it
- Not limited by graphical notation
- Libraries of models can be built up and shared

A big area of research!
Heights example

- Suppose we take a woman at random and a man at random from the UK population.
- The woman turns out to be taller than the man.
- What is the probability of this event?
- What is the posterior distribution over the woman’s height?
- What is the posterior distribution over the man’s height?
Heights example

Gaussian

heightWoman

heightMan

>

isTaller
Machine learning software

Black box

Weka
Bayes Net software (e.g. Hugin)
SVM libraries
gR

Probabilistic programming

BUGS
Infer.NET
Church
Hierarchical Bayes Compiler

BNT
VIBES
Csoft probabilistic language

- A representation language for probabilistic models.
- Takes C# and adds support for:
 - random variables
 - constraints on variables
 - inference
- Can be embedded in ordinary C# to allow integration of deterministic + stochastic code
Csoft – random variables

- Normal variables have a fixed single value.
 e.g. `int length=6, bool visible=true`.

- Random variables have uncertain value specified by a probability distribution.
 e.g. `int length = random(Uniform(0,10))`
 `bool visible = random(Bernoulli(0.8))`.

- Introduce `random` operator which means ‘is distributed as’.
We can define constraints on random variables, e.g.

- `constrain(visible==true)`
- `constrain(length==4)`
- `constrain(length>0)`
- `constrain(i==j)`

The `constrain(b)` operator means ‘we constrain b to be true’.
Csoft – inference

- The `infer()` operator gives the posterior distribution of one or more random variables.

- Example:
  ```
  int i = random(Uniform(1,10));
  bool b = (i*i>50);
  Dist bdist = infer(b); // Bernoulli(0.3)
  ```

- Output of `infer()` is always deterministic even when input is random.
Heights example in CsoFT

double heightMan = random(Gaussian(177,64));
double heightWoman = random(Gaussian(164,64));
Bernoulli dist = infer(heightWoman > heightMan);
constrain(heightWoman > heightMan);
Gaussian distWoman = infer(heightWoman);
Gaussian distMan = infer(heightMan);

- First infer is computed without the constraint
- Later inferences are computed with the constraint
Sampling interpretation

- Imagine running the program many times, where
 - `random(dist)` is an ordinary function that draws a random number from `dist`
 - `constrain(b)` stops the run if `b` is not true
 - `infer(x)` collects the value of `x` into a persistent memory (one for each use of `infer` in the program)
 - If enough `x`’s have been stored, return their distribution
 - Otherwise stop the run (i.e. wait until enough samples are collected)

- This defines the meaning of a Csoft program
Probabilistic programs & graphical models
Random variables

Probabilistic program

```plaintext
double x = random(Gaussian(0,1));
```

Graphical model

![Graphical model diagram](image_url)
Bayesian networks

Probabilistic program

double x = random(Gaussian(0,1));
double y = random(Gamma(1,1));
double z = random(Gaussian(x,y));

Graphical model

\[
\begin{align*}
\text{Gaussian}(0,1) & \quad \text{Gamma}(1,1) \\
x & \quad \text{Gaussian} \\
y & \quad z
\end{align*}
\]
Loops/plates

Probabilistic program

```java
for (int i = 0; i < 10; i++) {
    double x = random(Gaussian(0, 1));
}
```

Graphical model

![Graphical model of a loop with Gaussian distribution](image)
Loops/plates II

Probabilistic program

```java
double x = random(Gaussian(0,1));
double y = random(Gamma(1,1));
for(int i=0;i<10;i++) {
    double z = random(Gaussian(x,y));
}
```

Graphical model

[Diagram showing the graphical model with nodes labeled for Gaussian(0,1), Gamma(1,1), x, y, Gaussian, and z for i=0..9.]
If statement/gates

Probabilistic program

```c
bool b = random(Bernoulli(0.5)); double x;
if (b) {
    x = random(Gaussian(0,1));
} else {
    x = random(Gaussian(10,1));
}
```

Graphical model

![Graphical model diagram](image)

Gates (Minka and Winn, NIPS 2008)
Other language features

Probabilistic program

- Functions/recursion
- Indexing
- Jagged arrays
- Mutation: $x = x + 1$
- Objects
- ...

Graphical model

No common equivalent
Needs of Probabilistic Programming

- Flexible and general inference algorithms
- Modelling constructs that integrate nicely with inference
 - E.g. *Gates* (Minka and Winn, NIPS 2008)
- Compiler technology for probabilistic constructs
- Automatic scheduling of fixed-point updates
- Automatic parallelization
- …
Probabilistic programming in Infer.NET
Infer.NET

- *Compiles* probabilistic programs into inference code.
- No in-memory factor graphs = no overhead
- Consists of a chain of code transformations:

 ![Diagram](image)

 - Calling `infer` invokes this chain automatically
Infer.NET

- Model is specified using C#, with operators overloaded to look like Csoft
- C# code is internally converted into Csoft
- Inference compiler works only with Csoft
- In a future version, it will be possible to program in Csoft directly
- Free for academic use
 http://research.microsoft.com/infernet
Random variables in Infer.NET

Problabilistic program

```csharp
double x = random(Gaussian(0,1));
```

C# code

```csharp
Variable<double> x = Variable.Gaussian(0,1);
```
Bayesian networks

Probabilistic program

```plaintext
double x = random(Gaussian(0,1));
double y = random(Gamma(1,1));
double z = random(Gaussian(x,y));
```

C# code

```csharp
Variable<double> x = Variable.Gaussian(0,1);
Variable<double> y = Variable.Gamma(1,1);
Variable<double> z = Variable.Gaussian(x,y);
```
Inference in Infer.NET

Probabilistic program

```csharp
double x = random(Gaussian(0,1));
Dist xdist = infer(x);
```

C# code

```csharp
Variable<double> x = Variable.Gaussian(0,1);
InferenceEngine engine = new InferenceEngine();
IDistribution<double> xdist = engine.Infer(x);
// or
Gaussian xdist = engine.Infer<Gaussian>(x);
```
Loops/plates

Probabilistic program

```csharp
for(int i=0; i<10; i++) {
    double x = random(Gaussian(0, 1));
}
```

C# code

```csharp
Range i = new Range(10);
using (Variable.ForEach(i)) {
    Variable<double> x = Variable.Gaussian(0, 1);
}
```
Loops/plates II

Probabilistic program

double[] x = new double[10];
for (int i=0; i<10; i++) {
 x[i] = random(Gaussian(0,1));
}

C# code

Range i = new Range(10);
VariableArray<double> x = Variable.Array<double>(i);
using (Variable.ForEach(i)) {
 x[i] = Variable.Gaussian(0,1);
}
If statement/gates

Probabilistic program

```csharp
bool b = random(Bernoulli(0.5)); double x;
if (b) {
    x = random(Gaussian(0,1));
} else {
    x = random(Gaussian(10,1));
}
```

C# code

```csharp
Variable<bool> b = Variable.Bernoulli(0.5);
Variable<double> x = Variable.New<double>();
using(Variable.If(b)) {
    x.SetTo( Variable.Gaussian(0,1) );
} using(Variable.IfNot(b)) {
    x.SetTo( Variable.Gaussian(10,1) );
}
```
Indexing by random integer

Probabilistic program

\[
\begin{align*}
\text{bool[]} \ b &= \text{new bool}[2] \{ \text{true, false} \}; \\
\text{int} \ i &= \text{random}(\text{Discrete}(0.4,0.6)); \\
\text{bool} \ c &= b[i]; \quad \text{// Bernoulli}(0.4)
\end{align*}
\]

C# code

```csharp
VariableArray<bool> b = Variable.Array<bool>(range);
Variable<int> i = Variable.Discrete(range, 0.4, 0.6);  
Variable<bool> c = Variable.New<bool>();  
using (Variable.Switch(i)) {
    c.SetTo(b[i]);
}
```
On to the practical!

http://mlg.eng.cam.ac.uk/mlss09/material.htm