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Abstract

The ‘summation hack’ is the ad-hoc replacement of a product by a sum in a probabilistic
expression. This hack is usually explained as a device to cope with outliers, with no formal
derivation. This note shows that the hack does make sense probabilistically, and can be
best thought of as replacing an outlier-sensitive likelihood with an outlier-tolerant one.
This interpretation exposes the hack as an assumption about the outliers, allowing us to
determine when it makes sense to use the hack.

1 Outliers in discriminative models

One way to formalize supervised learning is to cast it as a maximum-likelihood problem in a
discriminative model. That is, a model which expresses the probability of a class label ¢ directly
as a function of the measured z. The probability of a dataset D = {(¢;, x;),i = 1,...,n} is given

by

n

p(Dl9) = [[pleiles0) (1)

i=1

This is the approach used in logistic regression, for example. However, some practitioners prefer
the following objective instead:

p(Df) =~ ZP(Cz‘m:@) (2)

It is often called the “minimum classification error” objective (Saul & Rahim, 1999), with no
probabilistic justification. In fact, this ‘summation hack’ has a natural interpretation as an
outlier model (but a very extreme one).

The model is this: to label a point, you first flip a coin with heads probability (1 — e). If the
coin turns up heads, you draw a label from p(c;|z;, ). If the coin turns up tails, you draw a
label from a uniform distribution (all labels equally likely). These latter occurrences are the
outliers. Let C' be the number of labels. Then the probability of drawing class ¢; for x; under
this process is

p/(0i|xi, 0) = e/C+(1—e)p(ci|ag,0) (3)



Now take a product of these likelihoods, as prescribed by (1). A Taylor expansion in (1 — e)
gives

[ (il ) = (e/O)" + (e/C)" (1 =€) pleilri, 0) + O((1 — e)?) (4)
i=1 i=1
If e is very close to 1 (a lot of outliers), then only the first two terms matter, and maximizing
(4) over 0 is equivalent to maximizing (2).

If your outlier assumption is not so extreme, you might want to set e to a reasonable value and
work with (3) directly. This is the approach used in Minka (2001), chapter 5.

There is another outlier model which yields (2) directly, not as a limit. The model says that
exactly one label in D was sampled from p(c|z, #), and the others were sampled uniformly (they
are all outliers). Under this model, the labels are no longer independent. Let i indicate which
point is the inlier, chosen randomly from 1 to n. Then the probability of the data is

p(DI8) = 3" p(Dli.0) )
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= _ZP (cilzi, 0)(1/C)* (7)

2 Outliers in generative models

Unsupervised learning can be cast as a maximum-likelihood problem with a generative model,
i.e. a probability model for measurements z. The probability of a dataset D = {x;,i =1,...,n}
is given by

p(DI0) Hp x;|6) (8)
However, some practitioners prefer this objective, because it is more tolerant of outliers:
p(DI0) Zp zi|6) (9)

To illustrate the difference, considering estimating the mean m of a Gaussian. Using (8) leads
to the sample mean as the estimate of m. Using (9) leads to the following fixed-point equation
for m:

m = itipim) (10)
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By iterating this equation, we repeatedly take the mean of a local window of the data, until a
local maximum is reached. This “mean-shift” algorithm is very tolerant of outliers, and can be
used to extract clusters one at a time (Comaniciu & Meer, 1997).

To explain (9), consider another coin-flip model: to sample a point x, you first flip a coin with
heads probability (1 — e). If the coin turns up heads, you draw z from p(z|6). If the coin turns
up tails, you draw z from a uniform distribution (1/A where A is the area of 2’s domain). This
leads to the modified model

p'(xlf) = e/A+(1—e)p(x]d) (11)

Now take a product of these likelihoods, as prescribed by (8). A Taylor expansion in (1 — e)
gives

n

[[7@ile) = (e/A)" +(e/A)" (1 —e) Y plailf) +O((L —e)?) (12)
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If e is very close to 1 (a lot of outliers), then only the first two terms matter, and maximizing
(12) over 0 is equivalent to maximizing (9).

The alternative “one inlier” model can also be used, to get (9) exactly. In that model, the
measurements are no longer considered independent.

3 Outliers in individual dimensions of Naive Bayes mod-
els

The outlier model in the previous section assumes that a data point is entirely an outlier or
entirely an inlier. But if the measurement x is vector-valued, it can happen that some of the
dimensions are corrupted, while others are not. It turns out that there is a ‘summation hack’
for naive Bayes models which can handle this situation as well.

Naive Bayes is a generative model for vector-valued measurements, where the measurements are
conditionally independent:

K

p(xlo) = [[p(zl6) (13)

k=1
However, this probability is sensitive to outliers in individual dimensions. The ‘summation hack’
in this case is

K

p(xl6) ~ > plail6) (14)

k=1



To explain it, once again consider a coin-flip model: to sample a feature x;, you first flip a coin
with heads probability (1 — e). If the coin turns up heads, you draw zj; from p(x|f). If the
coin turns up tails, you draw xj from a uniform distribution (1/A where A is the area of z;’s
domain). Note that all features must have the same domain in order for this to work. This
leads to the modified model

P(aild) = e/A+ (1—e)p(x|f) (15)

Now take a product of these likelihoods, as prescribed by (13). A Taylor expansion in (1 — e)
gives

K
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If e is very close to 1 (a lot of outliers), then only the first two terms matter, which are monotonic
n (14).

The alternative “one inlier” model can also be used, to get (14) exactly. But then it is no longer
a Naive Bayes model, because the dimensions are coupled.

4 QOutliers in Naive Bayes classification

Naive Bayes is often used for classification using Bayes’ rule:

__plxleple)
S SN0 "

Some people have replaced this formula with the following ‘summation hack’ which only looks
at the per-dimension posteriors:

Mw

p(c]x) = p(c|zy) (18)

k:
See for example Joachims (1997) and Schiele & Crowley (2000) (section 8).

This formula can be explained by the “one inlier” assumption (which makes it no longer a strict
Naive Bayes model). Let k& be the one dimension of x which is the inlier. This dimension
is sampled from p(xy|c) while the other dimensions are sampled from the marginal p(z;) =
> .p(zjle)p(c). The variable k is independent of the class ¢ and has uniform prior. Thus we



have

p(x) = []p) (19)

p(x|k,c) = p—p?;Jj)p(X) (20)
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pelx) = o0 Kkzl o(zn) K;p( |zk) (22)

What makes this generative model unusual is that all classes are involved in generating each
point. Because this is no longer a Naive Bayes model, the correct maximum-likelihood estimate
of p(zx|c) is not the Naive Bayes estimate, since k is unknown in the training data. Instead
we have to use EM to train the model, which is usually not considered when applying the
summation hack (18).
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