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Abstract

Variational lower bounds are a simple and efficient way to approximate Bayesian inte-
grals. By bounding the integrand at every point, we obtain a bound on the integral value.
Variational Bayes (Attias, 1999) and convex duality methods (Jaakkola & Jordan 1999a;
1999b) are of this type, and—as shown in this paper—so is the approximation method of
Cheeseman & Stutz (1996). In each case, EM is used to maximize the bound. The EM
updates are derived for Gaussian mixtures and multinomial mixtures with conjugate pri-
ors. Experimental results show the lower bound method to be less accurate than Laplace’s
method, but often simpler.

1 Introduction

Bayesian inference often involves difficult integrals that must be evaluated numerically. For
example, in classification we want to compute the predictive density p(c|z, D), the distribution
over class index c¢ given new measurement x and training data D. This requires an integral over
parameters 0: p(clz,D) = [, p(c|z,0)p(0|D)d6. In regression, we want to compute Ely|x, D] =
[, v Jyp(ylz, 0)p(0] D)dOdy. In density estimation, we want p(z|D) = [, p(2|0)p(0|D)d, the
predlctlve probability of a new measurement. In model selection, we want to compute p(D|M) =
J, p(D|0)p(0|M)dh, the probability of the training data given the model M, also known as the
evidence for M or likelihood for M.

The simplest and most common way to approximate such integrals is to evaluate the integrand
at a single value of #: the estimate of . Maximum likelihood, maximum a posteriori, and
minimum bias/variance are typical criteria for constructing such estimates. Much effort has
gone into designing optimization algorithms for such criteria. For example, the EM algorithm
is useful for ML and MAP estimation in hidden variable models, such as mixture models and
hidden Markov models. (For simple models like Gaussians and multinomials, most integrals are
tractable so there is little excuse for using parameter estimates with such models.)

At the other extreme, we can approximate the integrals using general numerical techniques such
as interpolative quadrature and Monte Carlo. This approach is attractive since the results are
much closer to the true value of the integral. However, it is also very computationally intensive.

Between these two extremes, we can try approximating the integrand until the integral becomes
tractable. This is the approach taken in this paper. A classical instance of this is Laplace’s
method, which is based on Taylor expansion of the logarithm of the integrand (see appendix A).



Unfortunately, Laplace’s method is unweildy in high dimensions, requiring a large matrix of
cross-derivatives. It also requires the integrand to be roughly log-quadratic, which may not be
true for likelihoods with hidden variables (see section 6), especially when near the boundary of
the parameter space.

Lower bound integration is simpler and more stable than Laplace’s method. The idea is to
bound the integrand from above or below, reducing the integration problem to an optimization
problem over the bound: making the bound as tight as possible. No parameter estimate is
needed; the quality of the integral is optimized directly. There are no problems at the boundary
of the parameter space.

Variational bounds enjoy increasing attention in the statistical learning literature. Jordan et al.
(1999) survey a variety of work on bounding posterior probabilities over hidden variables in
a graphical model, with particular emphasis on missing data. MacKay (1996) extends this to
include joint probabilities over parameters and missing data. Waterhouse et al. (1995) and
Attias (1999) show how variational bounds can approximate other Bayesian quantities such as
the evidence and predictive density. Penny & Roberts (2000) show that the performance for
model selection exceeds BIC.

This paper corrects the Gaussian mixture equations given by Attias (1999) and parallels them
with the multinomial case (MacKay, 1996). Second, it shows that the algorithms of MacKay
and Attias are EM algorithms paralleling those of Jaakkola & Jordan (1999a; 1999b).

2 EM for lower bound integration

Schematically, the procedure is as follows. We want to evaluate some integral

F = 0)do 1
|1 0

We find a lower (or upper) bound g such that
F(0)> g(6,6)  forall ¢ (2)

The bound is chosen so that its integral

G(0)= [ 90000 < F 3
0
is tractable. The remaining task is to maximize G(¢) over ¢, so that it is as close as possible
to F. We could use any optimization routine for this, but a particularly convenient choice is
EM. For an interpretation of EM as a general optimization algorithm, see Minka (1998). In
this application of EM, 0 is considered a hidden variable and ¢ the parameter. The traditional
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role of “complete log-likelihood” is played by log g(f, ). The algorithm consists of iteratively
maximizing

!A<ﬂ%ﬂ ) dg (4)

o %)
fo ¢old do

In many cases, the result looks like an EM algorithm for maximum likelihood (a maximization
over ), except that the E-step and M-step are swapped, since # is now a hidden variable. EM
was explicitly used to fit variational bounds by Jaakkola & Jordan (1999a; 1999b) and implicitly
used by others such as Ghahramani (1995). The “EM-like” algorithm given by Waterhouse et al.
(1995) and Attias (1999) is similar, but not identical because they reverse the E-step and M-step.

where ¢(6) = (5)

In the “variational Bayes” method (Waterhouse et al., 1995; MacKay, 1996; Attias, 1999), the
bound ¢(6, ¢) is defined implicitly through hidden variables. Start by writing f(6) in terms of
h(6,y) (y is the hidden variable):

7(6) = / ho, y)dy (6)

Apply Jensen’s inequality to get

F = / h(0,y)dydb (7)
0y
> o ([ ato.y)iog 20 M ayas ) 0
as long as/e q(0,y)dydd = 1 (9)

The variational Bayes method constrains ¢(6,y) to factor into separate functions for # and for
y:

q(0,y) = qo(0)qy(y) (10)
with no other constraints on functional form. The gy and g, functions are iteratively optimized
to maximize the value of the bound. To see that this is equivalent to (3), note that for any g,
we can solve analytically for the optimal gy, which is

9(0)
@(0) = W (11)
where g(0) = exp ( / qy(y) log hqie(;,‘?dy) (12)

When we substitute this gy, the bound becomes
Fo> /gw)de (13)
0

3



Here ¢ is the function g,, i.e. the distribution over missing data.

Lower bound integration generalizes variational Bayes since the bound does not have to be
a Jensen bound defined by hidden varables, in the same way that lower bound optimization
generalizes EM (Minka, 1998). Variational Bayes is sometimes interpreted as minimizing the
KL-divergence between an approximate and true distribution. Lower bound integration, in its
general form, does not have this interpretation.

There are other approaches to bounding an integral that do not involve bounding the integrand.
For example, we can apply Jensen’s inequality without introducing hidden variables:

/9 FO)0 > exp ( /9 q(Q)log%d&) (14)

as long as /q(@)d@ =1 (15)
0

To optimize the bound, we optimize ¢(f) over some convenient class of densities, e.g. Gaussian.
See e.g. Barber & Bishop (1997) and Jaakkola & Jordan (1999¢). This approach takes advantage
of the fact that log(f(€)) is often easy to integrate when f(f) is not. But this is not always
true. For the mixture problems considered in this paper, f is a product of sums, which does not
simplify under a logarithm. Consequently, this method is not used in this paper.

3 Posterior expectations

For approximating posterior expectations, we have the same options with the lower method as
we have with Laplace’s method. The expectation of f(#) over the posterior p(6|D) is

01— [ o L0

In the ratio method, we approximate each integral with a separate variational bound, as suggested
by Attias (1999). When there are many expectations to evaluate, this may be too expensive.
For example, if we want the predictive density

(16)

_p(x, D)

p(z|D) = /ep@!@)p(@\l))d@ = Elplel6)|D] == 55

(17)
then the ratio method would require a separate integral approximation for every location x.
A simpler approach is to bound p(#, D) once and then use the same bound to evaluate the

numerator integral for every x. This is the expectation method, since it uses expectations over a
single bound (Waterhouse et al., 1995).



4 Bounding the evidence of a mixture

A finite mixture model has the form

p(x]0) =Y plzlc,0)p(c|6) (18)
This section focuses on bounding the evidence

p(D) = / p(D[6)p(6)d6 (19)

0
p(0l) = TIp(lo) (20)

)

= H (ZP(IJQ =7 9)?(%’ = j’9)> (21>

i

The resulting bound can also be used to approximate posterior expectations via the expectation
method (section 3).

The bound used in this section comes from Jensen’s inequality and is the usual EM bound:

N 22)

i qij
where Z ¢ = 1 (23)
As long as the mixture components are simple, the value of the integral is now easy to compute.

The EM bound is not necessarily the best bound to use, or even a good bound to use, but it is
simple.

The running example will be a mixture of multinomial distributions. The Gaussian mixture
case is handled in section 5.

4.1 Fixed components

We start by making the component densities p(z|c) fixed so that the only parameters are the
mixing weights w; = p(c = j). For simplicity, let the prior be Dirichlet:

p(w) =D(ay,...,ay) (24)



(D) = / p(Dlw)p(w)dw (25)

plzlw) = Zp(aslczj)p(czjlw) (26)
plc=jlw) = w; (27)
p(w) = D(ay) (28)

Applying the bound gives

A0 [Tt = oo Lo ) T (4452)
(29)

The integral evaluates to

> @i o F(Zg O‘j) F(Oéj —+ ZZ Qij)
/WP(W) ij dw = (N + Zj a;) ; (o) (30)

There remains the issue of choosing ¢;;. As described in section 2, we will use EM to maximize
the integral of the bound. In the notation of that section, we have

0 ={w} ¢ = {qi;} (31)

(0.0 = pw) [Lu [ (210 =2) @)

i qij

p(%”Ci :j)

logg(0,¢) = logp(w)+ Z gij log w; + Z gij log 0
ij

iJ iJ

(33)

As a function of w, g has the form of a Dirichlet distribution times a scale factor. So immediately
we know that the E-step is

q(w) = D(a; + Z Gij) (34)

and the M-step maximizes (using A; to enforce (23))

qu log + Zq,] (/ w) log w; dw) + Z)\ qu (35)
whose maximum is
¢; < plxile :j)exp(/ q(w) log w;dw) (36)

/ g(w)logw;dw = Y(a; + Z ¢ij) — \IJ(Z a + N) (37)
w i k



The resulting EM algorithm is a simple iteration since p(z;|¢; = j) is fixed. If we were doing
MAP estimation for w, then the EM iteration would be

Lo =145
Qi OCP(%’Ci:J)ZJ ak—K+J<f (38)
k

so the soft assignments ¢;; in the variational bound will be slightly different than the ones used
for MAP.

To better understand what this bound is doing, define the estimate at convergence

w; = exp(¥ a]—i-ZqU V() ar+ N)) (39)

The denominator of g;; is 3, p(wi|c; = j)w; = p(z;|lw = W). So the likelihood of w = W is

pDfw =) = [Tt =) =T (P12 =200 ) (40

i qij
and we can rewrite the bound as the likelihood at w = w times a correction factor:
Zi ij
W) Jo POW) TT; wi ™ dw
~ Zl qij
[T, wy=™

As the sample size gets large, the correction factor approaches 1, and w approaches the MAP
estimate of w. The approximation (41) is the same as the heuristic proposal made by Cheeseman
& Stutz (1996), when the mixture components are fixed and w is used as the estimate of w.
The next section shows that this equivalence holds generally, even when the components are not
fixed. This is an interesting result because while the Cheeseman-Stutz approximation is known
to have good empirical performance (Chickering & Heckerman, 1996; Kontkanen et al., 1997),
it was not known to be a bound on the exact model evidence. This equivalence also justifies
using a smoothed estimate instead of a maximum-likelihood estimate in the Cheeseman-Stutz
approximation (Chickering & Heckerman, 1996).

p(D) = p(D|w = (41)

4.2 Fixed weights

Now let the mixing weights be fixed and the component parameters ; be unknown. Applying
the bound gives

7 (e = D\
/91 HJHZP SL‘Z|CZ—j j) IE[EJ];[( . > (42>
B = / O Tptoles= 5,000 (13
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For simple component densities, the integral F; is easy to compute. It is the usual evidence
formula for that density but with weighted data. For a multinomial component where ¢’ is a
vector of probabilities, we would have

plile; = 5,07) = [ [ (o)™ (44)

k

where N} is the number of occurrences of symbol k in sample 7. If the prior on 6 is Dirichlet:
p(67) = D(ay, ..., ak) (45)

then

o (Zk ak F ak + Z QZJ )
e S Sy 1;[ (46)

Now we use EM to optimize the ¢;;. We have
0 ={6"} ¢ ={q;} (47)
A\ T
o0.0) = T[o [t = 3.0y (M=) (15)
; e ij

"
plci = J)

tj

logg(6,0) = > logp(6?) + > aylogp(zile; = j.0) + 3 a;log”

J ij i

Thanks to the bound, the parameter posterior decouples: ¢(6y,...,0;) = q(61)---q(0;). By
inspection we see that the E-step is

q(0") = D(M}) (50)
where M] = ak—{—ZqijN,i (51)

and the M-step maximizes

qu (/ (67)log p(xi|c; = j,ﬁj)d9]> + Zq” log —|— Z)\ (Z ¢ij — ) (52)

tj

whose maximum is

g o plei = j) expl / (0 log plailes = j.6)d0%)  (53)
97

/ej q(0")logp(x;le; = j,0)d6P = Y N <‘I’(M;Z) ~(y Mi)) (54)



For MAP estimation, the EM algorithm would have been

g < plei = 4) [ ] (%) (55)

k

This iteration uses a single estimate for 7, while (53) uses the full distribution over 7. Inter-
estingly, some authors (Nigam et al., 1998; Monti & Cooper, 1999) have adopted the convention
of using

g < plei =5[] (ZM;]\/[J) (56)

for the iteration, which corresponds to using a predictive estimate for 67 instead of a MAP
estimate (Minka, 1999). This can be justified in terms of (53) since

exp(P(M))) _ Mj

— . (57)
exp(¥ (>, Mg)) Dk Mg
As in the last section, we can define the estimate at convergence
6 = exp(W(M]) = V(Y M])) (58)
k

The denominator of ¢;; is p(x;|0 = 0). So the likelihood of 6 = 6 is

qij

and we can rewrite the bound as

p(D) = p(D|9 - é) H Hp(x|cEJ:J é-)‘h’j (60)

which again is equivalent to the approximation of Cheeseman & Stutz (1996).

4.3 Unknown weights and components

This is a straightforward combination of the previous results. The bound is

o 1) )

v

—~

61)
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The E-steps are (34) and (50). The M-step maximizes

qu </ (67) log p(ile; = 4,67 d9])+z Qij (/ q(w) log deW> qu log q2J+Z)\ (Z Qij —

ij
(62)
whose maximum is

o exp ([ a@)1osptonfes= 5,000+ [ gt og s (63)
97 w

5 Mixture of Gaussians

This section derives the EM algorithm for bounding the likelihood of a mixture of Gaussians.
The handling of unknown mixture weights is identical to the previous section, so for simplicity
of exposition let the weights be fixed. The data model is

plxle=Jm0, V9) ~ N, V) (64)
= Gy RO VI ) (65)

First suppose that the variance parameter of each mixture component is known, so we only
need to integrate over the means {m', ..., m”}. Let’s focus on a particular component j, so that
superscript j is implicit. If the prior is conjugate:

pm) ~ N(my, Vo) (66)
1/2
[T ptale = jomys = PVEL s vk eop(-Lusvy) (67
Z. 27V |*/ 2
where K = Zqij (68)
1
X = EZQ@'in (69)

S = > gixi—x%)(x—%)" (70)
The bound is (42) with

B = [ ot TTocles = jomyam (M

1 _ 1 1
— |27rV|(K71)/2 Kd/zN(X’ my, V/K + V) exp(—étr(SV ) (72)
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where d is the dimensionality of x. The terms in m are N (x, V/K)N (my, Vy), so E-step is

V., = (V/KE)"' + Vi)™ = (V/E)(V/K + V)™V (73)
M o= Vou((V/K)'% + V;'my) (74)
olm) ~ A, V) (75
The M-step is (53) with
| atm)togplxfe; = jm)dm (76)
—% log |277V| — %E[(xi —m)™V (i —m)] = (77)
5108 [20V] — £ (x — )TV (3, — 1h) — Sx(V,, V) (78)

Again, this corresponds to a simple correction of the usual MAP iteration for m. The correction
d

is —5tr(V,, V1), which for large V, (a noninformative prior) is —5%. It gives extra weight
to big clusters, whose means are well-defined. In doing so, it will reduce the total number
of clusters used in the model. To understand why this should be so, note that there are two
competing factors which define the area of a bound: the height of the bound and the width of
the bound. For maximum height, we should use MAP. For maximum width, we should assign
all points to one cluster, leaving the other clusters unconstrained by the data (less constraints
imply a wider distribution). The bound with maximum area is therefore a compromise between

these extremes. See section 6 for examples.

Now let the means be known and variances unknown. We need to integrate over {Vy, ...,V }.
If the prior is conjugate:

p(V) ~ W™(So, No) (79)
1 V18, [V 1 .
= exp(—=tr(V™'S 80
a(Nof2) [VIF072 |2 mntV s =0
d
Cun/2) = xdDAT[T((n+1-1)/2) (s1)
i=1
The bound is (42) with (omitting superscript j)
B = [ V) [pale = jim)mav (s2)
v i
/ (V) exp(—tx(S,, V1))V (83)
= p /5 SXP = F T (Om
v 127 V| 572 2
La((K + No)/2) o Nos2 —(K+No)/2
Sol Sy, + S 0 84
K427 (N, /2) |Sol 1S + Sol (84)
Sm = ZQij(Xi_m>(Xz‘_m)T (85)
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The E-step is

(V) ~ W (S + S, K + No) (86)
For the M-step, we use
1 1
/ q(V)logp(x;|le; = 4, V)dV = —%l log(27m) — §E[1og V] — §<XZ —m)"E[V Y (x; — m) (87)
v
d
Eflog|[V|] = log|S, + S| — dlog(2) = > (K + No+1—1i)/2)  (88)
i=1
E[V™] = (K + No)(Sm+S0)™" (89)
A MAP iteration would be the same except (88) is replaced by

and (89) is replaced by (K 4+ No+d + 1)(S,, +So) ™. The difference between (88) over (90) is
a preference for bigger clusters, just as in the previous case.

Now let both means and variances be unknown. If the prior is conjugate:

p(m, V) ~ N(m;mg, V/Ko)W (V;So, Ny) (91)
The bound uses
B = [ pn V)T ptcle = jom, Vymdmav (92)
m,V i
p(V) K, )d/2 1 e
= —tr(SV dV 93
T, (K + Ny)/2 K, d/2 . |—(K+No)/2
m e ( . ) Sol™" |8 (94)
e Fd(No/Q) K + KO
. KoK
S = S+S,+ KolK(i—mo)(ic—mo)T (95)
The E-step is
m = (K+ Ky) '(Kx+ Kymy) (96)
¢m, V) ~ N(m;m, V/(Ky+ K)W™ (S, K + Ny) (97)

The parameter posterior decouples across the classes. For the M-step, we use

1 1 |
/ q(m, V) logp(x;|c; = j,m, V)dmdV = (const.)— iE[log V|| — §E[(xz — m)TV_l(xi —m)] (98
m,V

Ellog|V|] = log ]s( ~ dlog(2) = Y W((K + Ny +1-1)/2) (99
El(x, —m)"V7(x; —m)] = (K+ No)(x; —mn)"S™}(x; —1h) + d/(K, + K) (100
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6 Results

This section tests the accuracy of these bounds and notes some general trends. In particular,
while Chickering & Heckerman (1996) found that the Cheeseman-Stutz approximation (i.e. these
bounds) is comparable to Laplace’s method, the results here suggest that Variational Bayes (VB)
is inferior except in special cases.

6.1 Gaussian mean

Consider a mixture of two Gaussians with all parameters fixed except m!:

1 1
p(m') ~ N(0,100) (102)
Ten points are sampled from this model, with m! = 2. For this data, Evidence
figure 1 plots the exact posterior for m! versus the optimal varia- Exact 100%
tional bound. The table on the right gives the evidence estimate Laplace 94%
from each approximation, as a percentage of the exact evidence. VB 83%
For large N like 1000, the absolute error of the bound goes to zero. MAP 82%
However, the percentage covered by VB remains about the same. Hard 1%
a Exact
Laplace

p(m,D)

Exact
Laplace

log p(m,D)

Figure 1: Exact joint p(m!, D) versus different bounds and the Laplace approximation for a
Gaussian mean. On the right is the logarithm of the joint, logp(m!, D), and the bounds. The
number of samples was N = 10 using m! = 2.
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A useful point of comparison is Laplace’s method. The relevant derivatives are (see appendix A)

d*log p(m?')
(dm?)?

H = —1/100—2%1+ZQi1(1_Qi1)(xi_ml>2 (104)

gn =z —m' g =10 H,;, =-1 Hi;=0 = —1/100 (103)

Laplace’s method does not give a guaranteed bound, but the fit and evidence approximation is
quite good.

As mentioned earlier, the bound iteration (53) is similar to MAP iteration, especially when N
is large. For this example, the soft assignments ¢;; computed by MAP are very similar to those
computed by (53). The posterior bound resulting from the MAP ¢’s is indistinguishable from
VB in figure 1. This is a useful fact since algorithms for MAP EM are widely available.

Another way to bound the evidence is to use the best set of hard assignments, instead of the
soft assignments used by EM. This approach was taken by Vaithyanathan & Dom (1999). The
hard assignments can be optimized by K-means, which is much faster than EM. However, the
bound is much worse, as shown in figure 1 and the table.

The key difference between VB and MAP is illustrated in figure 2 for N = 1. Since there is only
one data point, which is reasonably close to the second mixture component, VB chooses to give
all weight to that component, that is ¢ = 1, leaving m' unconstrained by the data. This gives
the bound maximum area. It also corresponds to a simpler model since only one component
is used. The MAP bound, by contrast, always makes contact with the posterior at its mode.
It achieves maximum height, but not maximum area. Both mixture components are used: the

soft assignment is ¢;» = 0.3. Laplace’s method does the same thing, since it is equivalent to the
MAP bound in this case

/M Exact
Laplace

p(m,D)

Figure 2: Same as figure 1 but the dataset contained a single sample at x = 1.
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Laplace
VB

08

067

0.4r

Fraction of exact evidence

02F

0 05 1 15 2
m2
Figure 3: The evidence estimate of the lower bound method vs. Laplace’s method for two
Gaussian means, divided by the exact evidence. Each point represents an average over ten runs

where one thousand data points were sampled from a mixture with m! = —m?. The curve for
the MAP bound is essentially identical to that for the optimal bound.

Now let both means be free parameters:

1 1
p(m') ~ N'(=1,100) p(m?) ~ N(1,100) (106)
One hundred points are sampled from this model, with m! = —m?. Figure 3 plots the evi-

dence estimate of lower bound integration and Laplace’s method, for various values of m?. The
asymmetric prior ensures a unique posterior mode, but there are still two distinct local maxima,
corresponding to a swap of m! and m?. Since the bound is unimodal, only one of these local
maxima will be modeled. This is why both methods are consistently off by 2 when the means
are well separated (m? is large). See figure 4.

When the means are not well separated, both methods degrade, but for different reasons. The
variational bound does poorly because it doesn’t capture the correlation between m! and m? in-
duced by the data; the EM bound (22) always decouples the parameters for different components.
(This is also the reason why EM is sometimes slow to converge.) Even though the posterior is
elongated, the variational bound remains spherical and thus misses a lot of the area. Laplace’s
method doesn’t have this problem because it captures correlations via the Hessian matrix. But
Laplace’s method suffers from near-singularity of the Hessian matrix as the two maxima get
close together and merge. This is why it overestimates the area. A possible fix for both meth-
ods is to change the parameterization from (m', m?) to (s = (m' +m?)/2,t = (m! —m?)/2), as
suggested by Robert & Mengersen (1999) for sampling purposes.
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1 1 1
08 ] 08 > Exact 08 D Exact
: : B < >vB : > Laplace
06 1 06 | - 06
0.4 1 0.4 0.4
0.2 1 0.2 0.2
g o g o g o
-0.2 1 -0.2 -0.2
-0.4 1 -0.4 -0.4
-0.6 1 -0.6 -0.6
-0.8 1 -0.8 -0.8
1 -1 + 1
1 0.5 0 0.5 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1
1 1 1
08 ] 08 T Exact 08 > Exact
: ’ >vB : D Laplace
0.6 1 0.6 0.6
0.4 1 0.4 ST 0.4
0.2 1 0.2 0.2
g o g o g o
-0.2 1 -0.2 -0.2
-0.4 1 -0.4 -0.4
-0.6 1 -0.6 -0.6
-0.8 1 -0.8 -0.8
1 -1 1
1 0.5 0 0.5 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1
mil ml ml

Figure 4: Contours of the exact joint p(m!, m?, D) (left), the optimal bound (middle), and the
Laplace approximation (right), with the exact joint dotted underneath. The top row uses one
hundred data points from (m!' = —1/2,m? = 1/2) and the bottom row from (m! = 0,m? = 0).
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VB
Laplace

p(v,D)

Figure 5: Exact joint p(m', D) (solid) versus the optimal bound (dashed) and the MAP bound
(dash-dot) for a Gaussian variance. The number of samples was N = 10 using v!' = 1.

6.2 Gaussian variance

Now consider a mixture of two Gaussians with all parameters fixed except v':

1 1
plalv’) = SN(;0,0") + SN (2:2,1) (107)
p(v") ~ W(0.01,0.01) (108)
Ten points are sampled from this model, with v! = 1. For this
data, figure 5 plots the exact posterior for v! versus the approxima- Evidence
tions. The table on the right gives the evidence estimate from each Exact 100%
approximation, as a percentage of the exact evidence. The MAP Laplace 98%
bound, which touches the peak, misses some of the area since the VB 88%
density is skewed. For N = 1000, VB still only captures around MAP 85%

80% of the total evidence.

Laplace’s method is done via the parameterization v’ = log(v!). The Jacobian is v!, and the
relevant derivatives wrt v’ are:

1 a? x? d?log p(v') 0.01

n=—= o 0=0 Hj=-—1 Hp=0 —2L")__ """ (09

S 2 - 201 8i2 ! 201 ? (dv')? 201 (109)
0.01 22 1 22\’

H=—— - guo+Y an(l—qn) [~ + o 110
2l L Gty + i i ql)( 2+21)1) (110)

The location of the expansion is the MAP value of v/, not v!. It can be computed via the
usual MAP iteration for v! but with the effective prior p(v') ~ W=1(0.01,0.01 — 2), which
is (108) times the Jacobian. The lead term p(D, é) in Laplace’s method must also incorporate
the Jacobian.
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6.3 Gaussian mean and variance

Now let both m! and v! be free:

0,0' =

the correlation between m! and v'.

1.8

1.6

1.4

12

0.8

0.6

0.4

1

1
p(x|m1,vl) = EN(l’,ml,Ul)+§N($,2,1) (111>
p(m'vt) ~ N(0,1000") (112)
p(v") ~ W™0.01,0.01) (113)
One hundred points are sampled from this model, with (m! = Evidence
. The exact joint and its approximations are shown in Fxact 100%
figure 6. The table on the right gives the evidence estimate from Laplace 98%
each approximation, as a percentage of the exact evidence. As in VB 54%
the case of Gaussian means, VB is loose because it doesn’t capture MAP 54%
For Laplace’s method, the relevant derivatives are (using v’ = log(v?))
x;—mt 1
i1 1 n Q(J;me1)2 g2 = 0 (114)
2 20l |
1 zi—m! i
H; = — [mlm (s 2 H;, =0 (115)
vl 20l |
d2 lOg p(m17 Ul) . 10(1)111 158;1 (116)
AT o
= =l =i
16 1.6

-0.5

Figure 6: Contours of the exact joint p(m',v!, D) (left), the optimal bound (middle), and the
Laplace approximation (right), with the exact joint dotted underneath. One hundred data
points were sampled from (m! = 0,v! = 1).
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A Laplace’s method

Laplace’s method is based on the Taylor expansion

logp(D,0) ~ logp(D,0)+g"(0—0)+ %(9 —0O)THO - 0) + - -- (117)
dlogp(D,m)
g = (dls2lD.0) (118)
< df 0=0
d*logp(D,0)
H —aar |, (119)

If we choose § to maximize the joint density, or equivalently the posterior for 8, then the
second term disappears and we get

p(D,0) =~ p(D, H)exp( (0 —0)"H(6 — 0)) (120)

p(D) = / p(D,6)d8 = p(D, 6)(2m)>v=H)/2 | _F| /2 (121)

The Hessian matrix H is guaranteed to be negative semidefinite if 0 is a maximum. Singular
H can usually be avoided by choosing the right parameterization. To compute H for a mixture
density, define

dlogp(xi, C; = j|9)

gij = a0 (122)
d? logp(x,-,cl- = j|9)
Hy = dodoT (123)
. p(x;, ¢ = j|0)
q; = ple=jlx,0) = 124
Then
log p(D, 0) ) + Zlog Zp x;, ¢; = j|0)) (125)
dlogp(D,0) dlogp
dg - Z%]gzg (126>

T
d*logp(D,0)  d*logp(d
d0doT = d@d@T Z qi;Hij + Z qz]gmgz] Zl: ; 4ij8ij Zj: 9ij8ij (127)
By comparison, the Hessian of the EM bound (22) is (Minka, 1998)

d*logg(0,q)  d*logp(h)
0407 dodoT +Z ¢:iHiy (128)

though in that case ¢ is a parameter of the bound and need not correspond to (124).
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B Moments of a Normal-Wishart density

The density is

p(m, V) ~ NW '(mg, K,S,N) (129)
= N(m;m,, V/K)W VS, N) (130)
The moments are

E[V' = NS (131)
Epmm'] = V/K 4+ mym; (132)
Em'V™'m] = E[tr(V 'mm")] (133)
= Eld/K +m)V 'my] (134)
d/K 4+ Nmg S 'myg (135)

d
Ellog[V|] = log|S/2| =) W((N+1-1i)/2) (136)

=1

To prove (131), start with

WLV S, N)dV = VoIS p(—St(V-18))dV = 1 (137)
; S, = xp(—= —
V>0 v>0 ['4(N/2) |V|(d+1)/2 2 2
Take the derivative of both sides with respect to S:
N 1o -1
S8 V) WHVS,N)AV = 0 (138)
V>0 2 2
NSt —EVY = 0 (139)
To prove (136), start with
1 | Vis|'? 1
——tr(V7'S))dV = T4(N/2 14
/. S| PGV S = Tu(/2) (140)

Take the derivative of both sides with respect to IV:

o -1 —1q |V/2 d

%/WO 1 f\‘f?{dﬂ?/f\ V2 S exp(—%tr(v—ls))dv - %Fd(N/Q) Z V(N +1-1)/2)
_ - (141)
Ellog |[V™'8/2|] = Z U((N +1—14)/2) (142)
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