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Abstract

By rejecting the use of a prior distribution over parameters, orthodox statistics is forced

to focus on estimators, functions which guess parameter values, and to invent heuristics

for choosing among estimators. Two popular heuristics are unbiasedness and maximum

likelihood. Since these heuristics are not consistent with Bayes’ rule, they are also not

consistent with the axioms of common sense from which Bayes’ rule is derived. Hence

we expect there to be situations in which they violate common sense and indeed it is

not hard to find such situations. This paper reviews a few simple, realistic scenarios

where pathologies occur with either the unbiasedness heuristic or the maximum likelihood

heuristic.

1 Introduction

Many inference problems work like this: we observe some data and want to infer something
about the process that generated it. If we have a probability distribution over possible processes,
parameterized by θ, then there is general agreement that Bayes’ rule solves the problem:

p(θ|x) =
p(x|θ)p(θ)

p(x)

where x is the data we observe. Unfortunately, a probability distribution over θ is not always
forthcoming, e.g. if θ describes something about our universe like the mass of an electron. An
influential camp of statisticians, led by Ron Fisher, believed that any choice of p(θ) would, in
this case, be arbitrary and therefore produce arbitrary answers. Their alternative plan went like
this:

• Instead of computing a probability distribution over θ, directly decide on one value of θ
based on x. Call this function the estimator for θ.

• Apply any one of a series of heuristics to design an estimator that makes intuitive sense.

Since it avoided the supposed impasse of the prior distribution, this plan suffused the practice
and teaching of statistics, making it now what we call the “orthodox” approach to statistics.

The problem with heuristics is that they don’t always work. Thus orthodox statistics is designed
to fail occasionally; Bayes’ rule never was. This note gives examples of exactly this phenomenon.
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2 The Unbiasedness Heuristic

The unbiasedness heuristic says that an estimator f(x) for θ should satisfy
∫

X
f(x)p(x|θ)dx = θ

That is, the expected value of our estimator, taken over all possible data sets, should be the
true value of the parameter. The following examples illustrate two different kinds of pathologies
of this heuristic. The first pathology is related to the fact that the expectation in this definition
is taken over all possible data sets, while one should only care about the particular data that
was observed. The second pathology arises when no valid estimator satisfies the criteria.

2.1 The bias of a coin

This example appears in Lindley (1972). Suppose we flip a coin n times and get h heads. The
probability of this occurrence is

P (heads = h|n, θ) =

(

n

h

)

θh(1− θ)n−h (1)

The unbiased estimate of θ in this case is h/n. To check this, compute

∞
∑

h=0

f(h)p(h|n, θ) =
∞
∑

h=0

h

n

n!

(n− h)!h!
θh(1− θ)n−h (2)

= θ
∞
∑

h=0

(n− 1)!

(n− h)!(h− 1)!
θh−1(1− θ)n−h (3)

= θ
∞
∑

h=0

p(h− 1|n− 1, θ) (4)

= θ (5)

Now suppose we flip a coin as many times as it takes to get h heads. Let the number of flips be
n. Here h is fixed and n varies. The probability of this occurrence is

P (flips = n|h, θ) =

(

n− 1

h− 1

)

θh(1− θ)n−h (6)

To see why, note that this situation is equivalent to having h− 1 heads in n− 1 trials followed
by a head on the nth trial. With respect to θ, the likelihood function in (6) is a constant times
the likelihood function in (1). For any two values of θ, say θ1 and θ2, the relative weight that
the data gives to them is the same in both scenarios:

P (heads = h|n, θ1)

P (heads = h|n, θ2)
=

P (flips = n|h, θ1)

P (flips = n|h, θ2)
(7)
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According to this formula, if the data prefers θ1 to θ2 in the first scenario, then θ1 must
also be preferred to θ2 in the second scenario. However, the unbiased estimate of θ is now
(h− 1)/(n− 1) (or 1 if n = 1), by a similar derivation as above:

∞
∑

n=1

f(n)p(n|h, θ) =
∞
∑

n=1

h− 1

n− 1

(n− 1)!

(n− h)!(h− 1)!
θh(1− θ)n−h (8)

= θ
∞
∑

n=1

(n− 2)!

(n− h)!(h− 2)!
θh−1(1− θ)n−h (9)

= θ
∞
∑

n=1

p(n− 1|h− 1, θ) (10)

= θ (11)

Why does this happen? It is because the unbiasedness heuristic invokes a sum over all x, i.e. all
samples that could have been observed, but were not. Therefore, changing your belief in those
other samples can change the unbiased estimate, even though the likelihood function for the
particular sample you observed is unchanged.

Another way to explain the pathology is due to Jaynes (1996). Since the data set tells us both
n and h, it shouldn’t matter whether we assumed n or h beforehand. Asserting a proposition
twice has no effect on our knowledge: “A and A” is the same as “A.” But the unbiasedness
heuristic does make such a distinction between information assumed beforehand and information
acquired from the data. Only the former is used to design the estimator.

Note that when h = 1 and n > 1, the unbiased estimator will say θ̂ = 0, even though this is
impossible. The estimator only cares about getting the right expectation, and not about being
logically consistent. This point is echoed in the next example.

2.2 Arrival rate

This example appears in Lindley (1972). Suppose while waiting one hour, we observe x arrivals
from a Poisson process with rate θ per hour. The probability of this occurrence is

P (arrivals = x|θ) = e−θθx/x!

We want to know the probability that there will be no occurrences in the next hour. That is,
we want to estimate e−θ. An unbiased estimator f(x) for e−θ must satisfy

∞
∑

x=0

f(x)e−θθx/x! = e−θ

for all θ. Multiplying both sides by eθ gives
∞
∑

x=0

f(x)θx/x! = 1 (12)
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Therefore f(x) is the power series in θ for 1, which means f(x) = 0x, i.e. f(x) = 1 if x = 0
and f(x) = 0 if x > 0. Therefore, if we observe no arrivals in an hour, then we expect to never
observe any arrivals (e−θ = 1 so θ = 0), and if we observe any arrivals at all, then we expect to
always see arrivals (e−θ = 0 so θ = ∞).

As another example, suppose we now want to estimate the probability of no occurrences in
the next two hours, i.e. e−2θ. We can proceed as before by multiplying both sides by eθ, so
that f(x) is the power series for e−θ in θ. This establishes f(x) = (−1)x as the only unbiased
estimate, which is absurd since e−2θ must always be positive. This estimator also makes an
irrelevant distinction between even and odd numbers of arrivals. Similar problems occur if we
try to estimate some power of θ (Jaynes, 1996).

Here we have exploited the fact that unbiased estimators are not invariant to a change in the
parameters. The unbiased estimator for θ is x, but the estimator for e−θ is not e−x. The reason
is that when you change parameters the expectation is now being taken over a different space.

The same pathology occurs when estimating θ2 from samples of a N (θ, 1) distribution (Press,
1989). The minimum-variance unbiased estimator is f(x) = x̄ − 1/n, which can sometimes be
negative even though θ2 must be positive.

3 The Maximum Likelihood Heuristic

The maximum likelihood heuristic says that an estimator f(x) for θ should have the property

f(x) = argmaxθp(x|θ)

This heuristic gives reasonable solutions in the scenarios considered above (the ML estimates
are h/n and e−x, respectively). It doesn’t rely on an imagined space of data sets and is invariant
to reparameterization. However, this section gives two other scenarios in which the unbiased-
ness heuristic leads to the more sensible answer. Thus neither heuristic can be recommended
universally. More generally, it may happen that neither heuristic is sensible for your problem.

The maximum likelihood heuristic arises as an approximation to Bayes’ rule where the likelihood
function is assumed to be sharply peaked and the prior is uniform. Hence pathologies can be
found by considering situations where this approximation is not valid.

3.1 Mixture of Gaussians

This example appears in Lindley (1972). Let X = [x1..xN ] be a sample of size N from the
density

p(x) =
1

2
N (x; 0, 1) +

1

2
N (x;µ, σ2)
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That is, each sample either comes from a standard normal or a normal with unknown parameters.
If we set µ = xi for some i, then as σ → 0 the probability of the entire data set p(X|µ, σ) tends to
infinity. Therefore all maximum likelihood estimates are of the form (µ = xi, σ = 0). However,
σ = 0 does not define a proper density, so this solution must be rejected. Of course, there are
local maxima which are well-behaved, but since these are only local, they are rejected by the
maximum-likelihood heuristic.

An even simpler example has a single sample from a Gaussian with unknown mean and variance.
Again, the maximum likelihood estimate of the variance is invalid. If instead we use Bayes’ rule
with a uniform prior on µ, we find that

p(x|σ) =
∫

µ
p(x|µ, σ)p(µ) (13)

=
∫

∞

−∞

N (x;µ, σ2) 1 dµ (14)

= 1 = p(x) (15)

p(σ|x) =
p(x|σ)p(σ)

p(x)
(16)

= p(σ) (17)

so the posterior for σ is simply the prior for σ, which makes sense since one data point provides
no information about the variance.

3.2 Pairs of samples

This example appears in Lindley (1972). Suppose we have K Gaussian densities from which
we draw two samples each. The densities have means µ1..µK and common variance σ2, all of
which are unknown. The samples from density i are ai and bi. Let the collective data set which
contains 2K points be called X = {a1..aK , b1..bK}. The probability of X is

p(X|µ1..µK , σ
2) =

∏

i

N (ai;µi, σ
2)N (bi;µi, σ

2) (18)

=
1

(2πσ2)K
exp

(

−

∑

i(ai − µi)
2 + (bi − µi)

2

2σ2

)

(19)

=
1

(2πσ2)K
exp

(

−

∑

i(ai − bi)
2 + 4(µi −

ai+bi
2

)2

4σ2

)

(20)

from which it is clear that the maximum likelihood estimate of µi = (ai + bi)/2. Taking the
logarithm, we have that the maximum likelihood estimate of σ2 must maximize

−K log(2πσ2)−
1

4σ2

∑

i

(ai − bi)
2
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whose maximum occurs at σ̂2 = 1

4K

∑

i(ai − bi)
2. However, this estimator is biased:

E[σ̂2] =
1

2
σ2 (21)

and remains so even as K → ∞ (i.e. the number of samples goes to infinity). Therefore the
estimator is not consistent.

If K = 1, then we have two samples from a Gaussian with unknown parameters, where we
already knew that the maximum likelihood estimator is biased by a factor of two. The case
K > 1 essentially repeats this experiment many times, obtaining a more precise estimator but
one which is still biased by a factor of two.

One way to explain this is that the number of free parameters increases withK, so the overfitting
caused by the maximum-likelihood heuristic never goes away. Parameters like µi that are not
of interest in the problem are called nuisance parameters and are much easier to handle using
Bayes’ rule: they are simply integrated out. Using a uniform prior over µi gives

p(X|σ2) =
∫

µ1

..
∫

µK

p(X|µ1..µK , σ
2)p(µ1)..p(µK) (22)

=
∫

µ1

..
∫

µK

1

(2πσ2)K
exp

(

−

∑

i(ai − bi)
2

4σ2

)

exp

(

−

∑

i(µi −
ai+bi

2
)2

σ2

)

1 (23)

=
(πσ2)K/2

(2πσ2)K
exp

(

−

∑

i(ai − bi)
2

4σ2

)

∫

µ1

..
∫

µK

1

(πσ2)K/2
exp

(

−

∑

i(µi −
ai+bi

2
)2

σ2

)

(24)

=
(πσ2)K/2

(2πσ2)K
exp

(

−

∑

i(ai − bi)
2

4σ2

)

(25)

The maximum of this likelihood function is at σ̂2 = 1

2K

∑

i(ai − bi)
2, which as an estimator is

not only consistent but also unbiased. Of course, there is no need to use a maximum-likelihood
solution at this point either. Since the posterior for σ2 will approach an impulse as K → ∞,
any reasonable Bayesian estimate will be consistent, for any prior which is everywhere nonzero.

4 Conclusions

Orthodoxy plays a shell game where if one heuristic fails, it advocates another. Unfortunately, it
is not always so easy to check the answer by intuition and see that it is inconsistent or illogical.
Furthermore, appealing to the unbiasedness versus maximum likelihood heuristic is a matter of
taste, leading to a multiplicity of “best” estimators for the same problem. Interestingly, these
are the same criticisms that orthodoxy leveled against using priors.

Alternatively, one can simply use Bayesian probability theory, which is not heuristic in nature
and dictates a single right answer for every well-posed problem. Its success hinges only on the
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consistency of the axioms from which it is derived: axioms which are not only compelling but
which have been scrutinized for centuries without a single inconsistency ever having been found.
Thus there is no rebuttal paper to this one, containing pathologies in Bayesian probability theory.
The “paradoxes” of Bayesian probability theory which sometimes appear in the literature have
always been found erroneous (Jaynes, 1996).

The requirement for this strong warranty, however, is that the practitioner be careful to specify
all assumptions and knowledge to be used in an inference task. If certain knowledge is missing,
then that fact should be encoded too. Orthodoxy believes that probability distributions can
only encode knowledge, and not ignorance. But one of the achievements of this century, though
it was slow in being recognized, was that it is possible to encode ignorance in a prior (Jeffreys,
1961). Since Jeffreys’ original work, there is now a large body of research on how to find these
priors. At this point in time, we have numerous examples of how orthodox results, when they
make sense, are equivalent to choosing one such “ignorance prior.”
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