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Suppose you are given a dataset of pairs (x, c) where c is a class variable and x is a vector of features. Given a
new x, you want to predict its class. The generative i.i.d. approach to this problem posits a model family

p(x, c | θ) = p(x | c, λ)p(c | π) (1)

and chooses the best parameters θ = {λ, π} by maximizing (or integrating over) the joint distribution (where D
denotes the data):

p(D, θ) = p(θ)
∏

i

p(xi, ci | θ) = p(θ)
∏

i

p(xi | ci, λ)p(ci | π) (2)

Another approach, sometimes called “discriminative training” or “conditional training”, chooses the best θ by
maximizing (or integrating over) the conditional distribution:

p(C, θ | X) = p(θ)
∏

i

p(ci | xi, θ) (3)

where p(c | x, θ) =
p(x, c | θ)∑
c p(x, c | θ)

(4)

While this is a valid way of obtaining a classifier, the description is misleading. To start with, the term “dis-
criminative training” is a misnomer, because given a probabilistic model, there is only one correct likelihood and
therefore only one correct way to train it. What is really going on in (3) is that the model has changed, not the
training principle.

The correct way to derive (3) is to posit a new model family with an additional set of parameters θ′:

q(x, c | θ, θ′) = p(c | x, θ)p(x | θ′) (5)

where p(x | θ′) =
∑

c

p(x, c | θ′) (6)

Here p(c | x, θ) is the same as (4) and p(x, c | θ′) is the same as (1) but with parameters θ′. The parameter sets
θ and θ′ have the same type but are independent. Now choose the best parameters (θ, θ′) in the standard way
by maximizing (or integrating over) the joint likelihood:

q(D, θ, θ′) = p(θ)p(θ′)
∏

i

q(xi, ci | θ, θ′) = p(θ)p(θ′)
∏

i

p(ci | xi, θ)p(xi | θ′) (7)

Due to the model assumptions, the estimations of θ and θ′ decouple, so the best θ is the same as in (3).

By taking this view, you have a consistent approach to statistical inference: you always model all variables, and
you always use joint likelihood. The only thing that changes is the model.

You can also see clearly why discriminative training might work better than generative training. It must be
because a model of the form (5) fits the data better than (1). In particular, (5) is necessarily more flexible than
(1), because it removes the implicit constraint that θ = θ′. Removing constraints reduces the statistical bias, at
the cost of greater parameter uncertainty.

Besides consistency and clarity, this view also has a practical advantage, in that you can easily blend between the
generative and discriminative approach, e.g. to incorporate unlabeled data. All you do is use a prior p(θ, θ′) in
which θ and θ′ are coupled. The θ′ parameter will adapt to fit the unlabeled x’s, which then affects θ. By forcing
the parameters to be equal, you recover the generative approach. With a softer coupling, you get discriminative
semi-supervised learning.

To summarize: The term “discriminative training” should be abolished. Instead, we should refer to models of
the form in (5) as discriminative models.
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