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In a recent paper, Domingos (2000) compares Bayesian model averaging (BMA) to other model
combination methods on some benchmark data sets, is surprised that BMA performs worst, and
suggests that BMA may be flawed. These results are actually not surprising, especially in light
of an earlier paper by Domingos (1997) where it was shown that model combination works by
enriching the space of hypotheses, not by approximating a Bayesian model average. And the
only flaw with BMA is the belief that it is an algorithm for model combination, when it is not.

Bayesian model averaging is best thought of as a method for ‘soft model selection.’ It answers
the question: “Given that all of the data so far was generated by exactly one of the hypotheses,
what is the probability of observing the new pair (c, x)?” The soft weights in BMA only reflect
a statistical inability to distinguish the hypothesis based on limited data. As more data arrives,
the hypotheses become more distinguishable and BMA will always focus its weight on the most
probable hypothesis, just as the posterior for the mean of a Gaussian focuses ever more narrowly
on the sample mean. Mathematically, we can write the BMA rule as

p((c, x)|D) ∝
∑

h

p((c, x), D|h)p(h) (1)

which emphasizes the assumption that exactly one hypothesis is responsible for all of the data.

A simple example can illustrate the difference between model combination and BMA. Let the
true class assignments be as shown in figure 1(a): an instance is in class ‘o’ iff it is inside at
least two of the circles. Let the circles be our three hypotheses. The best way to combine them
is with a uniform vote—this gives 100% accuracy. But BMA will not do this; it will focus its
weight on the topmost circle, because this circle is the most homogeneous and therefore most
likely to have generated the data. (The circle placement is not perfectly symmetric.) Figure 1(b)
plots the accuracy on a fixed set of test data, as the training set size increases. As expected,
BMA has worse performance with more data, because it moves away from the optimal uniform
weighting. This happens no matter how similar the hypotheses are in error rate, as long as the
error rates are different. Even if the error rates are 20% and 19.99%, BMA will eventually put
all weight on the latter hypothesis.

This kind of model mismatch may be to blame in all of Domingos’ results. This reminds us that
Internet benchmarks in general are not a good way to analyze an algorithm’s behavior. Such
benchmarks only measure the robustness of an algorithm to the vagaries of real-world data in
different domains—they don’t measure how well an algorithm exploits the domain assumptions
it was designed for.

So now we know that to do model combination, we should not use BMA on the models. What
should we do instead? We can use Bayesian methods to perform model combination, as long
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Figure 1: (a) A classification problem where points in 2D are labeled with ‘x’ or ‘o’. The optimal
solution is to label ‘o’ if a point is in at least two circles, corresponding to a uniform vote between
the circles. (b) The test-set accuracy of BMA, as a function of training set size. BMA always
focuses on the topmost circle, even though the other two circles have nearly the same accuracy.

as we ask the right question. For example: “Given that all of the data so far was generated by
some linear combination of the hypotheses, what is the probability of observing the new pair
(c, x)?” This is BMA applied to a new hypotheses space of “stacked” models. On the circle
problem, it will converge to the optimal uniform vote.
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