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Abstract

This paper presents a unifying view of message-
passing algorithms, as methods to approximate a
complex Bayesian network by a simpler network
with minimum information divergence. In this
view, the difference between mean-field meth-
ods and belief propagation is not the amount
of structure they model, but only the measure
of loss they minimize (‘exclusive’ versus ‘inclu-
sive’ Kullback-Leibler divergence). In each case,
message-passing arises by minimizing a local-
ized version of the divergence, local to each fac-
tor. By examining these divergence measures,
we can intuit the types of solution they prefer
(symmetry-breaking, for example) and their suit-
ability for different tasks. Furthermore, by con-
sidering a wider variety of divergence measures
(such as alpha-divergences), we can achieve dif-
ferent complexity and performance goals.

1 Introduction

Bayesian inference provides a mathematical framework for
many artificial intelligence tasks, such as visual tracking,
estimating range and position from noisy sensors, classify-
ing objects on the basis of observed features, and learning.
In principle, we simply draw up a belief network, instan-
tiate the things we know, and integrate over the things we
don’t know, to compute whatever expectation or probabil-
ity we seek. Unfortunately, even with simplified models of
reality and clever algorithms for exploiting independences,
exact Bayesian computations can be prohibitively expen-
sive. For Bayesian methods to enjoy widespread use, there
needs to be an array of approximation methods, which can
produce decent results in a user-specified amount of time.

Fortunately, many belief networks benefit from an averag-
ing effect. A network with many interacting elements can
behave, on the whole, like a simpler network. This in-
sight has led to a class of approximation methods called

variational methods (Jordan et al., 1999) which approxi-
mate a complex network p by a simpler network q, opti-
mizing the parameters of q to minimize information loss.
The simpler network q can then act as a surrogate for p in
a larger inference process. (Jordan et al. (1999) used con-
vex duality and mean-field as the inspiration for their meth-
ods, but other approaches are also possible.) Variational
methods are well-suited to large networks, especially ones
that evolve through time. A large network can be divided
into pieces, each of which is approximated variationally,
yielding an overall variational approximation to the whole
network. This decomposition strategy leads us directly to
message-passing algorithms.

Message passing is a distributed method for fitting
variational approximations, which is particularly well-
suited to large networks. Originally, variational meth-
ods used coordinate-descent schemes (Jordan et al., 1999;
Wiegerinck, 2000), which do not scale to large heteroge-
neous networks. Since then, a variety of scalable message-
passing algorithms have been developed, each minimizing
a different cost function with different message equations.
These include:

• Variational message-passing (Winn & Bishop, 2005),
a message-passing version of the mean-field method
(Peterson & Anderson, 1987)

• Loopy belief propagation (Frey & MacKay, 1997)

• Expectation propagation (Minka, 2001b)

• Tree-reweighted message-passing (Wainwright et al.,
2005b)

• Fractional belief propagation (Wiegerinck & Heskes,
2002)

• Power EP (Minka, 2004)

One way to understand these algorithms is to view their
cost functions as free-energy functions from statistical
physics (Yedidia et al., 2004; Heskes, 2003). From this
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viewpoint, each algorithm arises as a different way to ap-
proximate the entropy of a distribution. This viewpoint can
be very insightful; for example, it led to the development
of generalized belief propagation (Yedidia et al., 2004).

The purpose of this paper is to provide a complementary
viewpoint on these algorithms, which offers a new set of
insights and opportunities. All six of the above algorithms
can be viewed as instances of a recipe for minimizing in-
formation divergence. What makes algorithms different is
the measure of divergence that they minimize. Information
divergences have been studied for decades in statistics and
many facts are now known about them. Using the theory
of divergences, we can more easily choose the appropri-
ate algorithm for our application. Using the recipe, we can
construct new algorithms as desired. This unified view also
allows us to generalize theorems proven for one algorithm
to apply to the others.

The recipe to make a message-passing algorithm has four
steps:

1. Pick an approximating family for q to be chosen from.
For example, the set of fully-factorized distributions,
the set of Gaussians, the set of k-component mixtures,
etc.

2. Pick a divergence measure to minimize. For ex-
ample, mean-field methods minimize the Kullback-
Leibler divergence KL(q || p), expectation propaga-
tion minimizes KL(p || q), and power EP minimizes
α-divergence Dα(p || q).

3. Construct an optimization algorithm for the chosen di-
vergence measure and approximating family. Usually
this is a fixed-point iteration obtained by setting the
gradients to zero.

4. Distribute the optimization across the network, by di-
viding the network p into factors, and minimizing lo-
cal divergence at each factor.

All six algorithms above can be obtained from this recipe,
via the choice of divergence measure and approximating
family.

The paper is organized as follows:

1 Introduction 1
2 Divergence measures 2
3 Minimizing α-divergence 4

3.1 A fixed-point scheme . . . . . . . . . . . . 4
3.2 Exponential families . . . . . . . . . . . . 5
3.3 Fully-factorized approximations . . . . . . 5
3.4 Equality example . . . . . . . . . . . . . . 6

4 Message-passing 7
4.1 Fully-factorized case . . . . . . . . . . . . 7

4.2 Local vs. global divergence . . . . . . . . . 8
4.3 Mismatched divergences . . . . . . . . . . 9
4.4 Estimating Z . . . . . . . . . . . . . . . . 9
4.5 The free-energy function . . . . . . . . . . 10

5 Mean-field 10
6 Belief Propagation and EP 11
7 Fractional BP and Power EP 12
8 Tree-reweighted message passing 12
9 Choosing a divergence measure 13
10 Future work 14
A Ali-Silvey divergences 15
B Proof of Theorem 1 16
C Hölder inequalities 16
D Alternate upper bound proof 17
E Alpha-divergence and importance sampling 17

2 Divergence measures

This section describes various information divergence mea-
sures and illustrates how they behave. The behavior of di-
vergence measures corresponds directly to the behavior of
message-passing algorithms.

Let our task be to approximate a complex univariate or mul-
tivariate probability distribution p(x). Our approximation,
q(x), is required to come from a simple predefined family
F , such as Gaussians. We want q to minimize a divergence
measure D(p || q), such as KL divergence. We will let p
be unnormalized, i.e.

∫
x
p(x)dx 6= 1, because

∫
x
p(x)dx

is usually one of the things we would like to estimate.
For example, if p(x) is a Markov random field (p(x) =∏
ij fij(xi, xj)) then

∫
x
p(x)dx is the partition function. If

x is a parameter in Bayesian learning and p(x) is the like-
lihood times prior (p(x) ≡ p(x,D) = p(D|x)p0(x) where
the data D is fixed), then

∫
x
p(x)dx is the evidence for the

model. Consequently, q will also be unnormalized, so that
the integral of q provides an estimate of the integral of p.

There are two basic divergence measures used in this paper.
The first is the Kullback-Leibler (KL) divergence:

KL(p || q) =

∫

x

p(x) log
p(x)

q(x)
dx+

∫
(q(x)− p(x))dx

(1)
This formula includes a correction factor, so that it ap-
plies to unnormalized distributions (Zhu & Rohwer, 1995).
Note this divergence is asymmetric with respect to p and q.
The second divergence measure is a generalization of KL-
divergence, called the α-divergence (Amari, 1985; Trottini
& Spezzaferri, 1999; Zhu & Rohwer, 1995). It is actually
a family of divergences, indexed by α ∈ (−∞,∞). Dif-
ferent authors use the α parameter in different ways. Using
the convention of Zhu & Rohwer (1995), with α instead of
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Figure 1: The Gaussian q which minimizes α-divergence to p (a mixture of two Gaussians), for varying α. α → −∞
prefers matching one mode, while α→∞ prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaussian q which minimizes α-divergence to p, for varying α. In
each case, the true value is matched at α = 1.

δ, the formula is:

Dα(p || q) =

∫
x
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

α(1− α)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and α-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that α-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:

D−1(p || q) =
1

2

∫

x

(q(x)− p(x))2

p(x)
dx (3)

lim
α→0

Dα(p || q) = KL(q || p) (4)

D 1
2
(p || q) = 2

∫

x

(√
p(x)−

√
q(x)

)2

dx (5)

lim
α→1

Dα(p || q) = KL(p || q) (6)

D2(p || q) =
1

2

∫

x

(p(x)− q(x))2

q(x)
dx (7)

The case α = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and α = 2 is the χ2

distance. Changing α to 1− α swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For
different values of α, figure 1 plots the global minimum of

Dα(p || q) over q. The solutions vary smoothly with α, the
most dramatic changes happening around α = 0.5. When
α is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When α is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when α → ∞. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase α.

The properties observed in this example are general, and
can be derived from the formula for α-divergence. Start
with the mode-seeking property for α � 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that α ≤ 0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as α gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 − α). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance similar to the vari-
ance of the widest component, even if there are many over-
lapping components. For example, if p has 100 identical
Gaussians in a row, forming a plateau, the optimal q is only
as wide as one of them.

When α ≥ 1, a different tendency happens. These diver-
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Figure 3: The structure of α-divergences.

gences want to cover as much of p as possible. Following
the terminology of Frey et al. (2000), these divergences
are inclusive (α < 1 are exclusive). Inclusive divergences
require q > 0 whenever p > 0, thus avoiding “false nega-
tives.” If two identical Gaussians are separated enough, an
exclusive divergence prefers to represent only one of them,
while an inclusive divergence prefers to stretch across both.

Figure 3 diagrams the structure of α space. As shown
later, the six algorithms of section 1 correspond to min-
imizing different α-divergences, indicated on the figure.
Variational message-passing/mean-field uses α = 0, belief
propagation and expectation propagation use α = 1, tree-
reweighted message-passing can use a variety of α ≥ 1,
while fractional belief propagation and power EP can use
any α-divergence.

The divergences with 0 < α < 1 are a blend of these ex-
tremes. They are not zero-forcing, so they try to represent
multiple modes, but will ignore modes that are far away
from the main mass (how far depends on α).

Now consider the mass of the optimal q. Write q(x) =
Z̃q̄(x), where q̄ is normalized, so that Z̃ represents the
mass. It is straightforward to obtain the optimum Z̃:

Z̃α =





exp
(∫

x
q̄(x) log p(x)

q̄(x)dx
)

if α = 0
(∫
x
p(x)αq̄(x)1−αdx

)1/α
otherwise

(8)

This is true regardless of whether q̄ is optimal.

Theorem 1 If x is a non-negative random variable, then
E[xα]1/α is nondecreasing in α.

Proof: See appendix B.

Theorem 2 Z̃α is nondecreasing in α. As a consequence,

Z̃ ≤
∫

x

p(x)dx if α < 1 (9a)

Z̃ =

∫

x

p(x)dx if α = 1 (9b)

Z̃ ≥
∫

x

p(x)dx if α > 1 (9c)

Proof: In Th. 1, let x = p(x)/q̄(x) and take the expecta-
tion with respect to q̄(x).

Theorem 2 is demonstrated in figure 2: the integral of q
monotonically increases with α, passing through the true
value when α = 1. This theorem applies to an exact min-
imization over Z̃, which is generally not possible. But it
shows that the α < 1 divergence measures tend to underes-
timate the integral of p, while α > 1 tends to overestimate.
Only α = 1 tries to recover the correct integral.

Now that we have looked at the properties of different di-
vergence measures, let’s look at specific algorithms to min-
imize them.

3 Minimizing α-divergence

This section describes a simple method to minimize α-
divergence, by repeatedly minimizing KL-divergence. The
method is then illustrated on exponential families and fac-
torized approximations.

3.1 A fixed-point scheme

When q minimizes the KL-divergence to p over a familyF ,
we will say that q is the KL-projection of p onto F . As a
shorthand for this, define the operator proj[·] as:

proj[p] = argmin
q∈F

KL(p || q) (10)

Theorem 3 Let F be indexed by a continuous parameter
θ, possibly with constraints. If α 6= 0:

q is a stationary point of Dα(p || q)
⇐⇒ q is a stationary point of proj

[
p(x)αq(x)1−α]

(11)

Proof: The derivative of the α-divergence with respect to
θ is

dDα(p || q)
dθ

=
1

α

(∫

x

dq(x)

dθ
dx−

∫

x

p′θ(x)

q(x)

dq(x)

dθ
dx

)

(12)

where p′θ(x) = p(x)αq(x)1−α (13)

When α = 1 (KL-divergence), the derivative is

dKL(p || q)
dθ

=

∫

x

dq(x)

dθ
dx−

∫

x

p(x)

q(x)

dq(x)

dθ
dx (14)

Comparing (14) and (12), we find that

dDα(p || q)
dθ

∣∣∣∣
θ=θ0

=
1

α

dKL(p′θ0 || q)
dθ

∣∣∣∣
θ=θ0

(15)
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Therefore if α 6= 0, the corresponding Lagrangians must
have the same stationary points.

To find a q satisfying (11), we can apply a fixed-point iter-
ation. Guess an initial q, then repeatedly update it via

q′(x) = proj
[
p(x)αq(x)1−α] (16)

q(x)new = q(x)εq′(x)1−ε (17)

This scheme is heuristic and not guaranteed to converge.
However, it is often successful with an appropriate amount
of damping (ε).

More generally, we can minimize Dα by repeatedly mini-
mizing any other Dα′ (α′ 6= 0):

q′(x) = argminDα′(p(x)α/α
′
q(x)1−α/α′ || q′(x)) (18)

3.2 Exponential families

A set of distributions is called an exponential family if
each can be written as

q(x) = exp(
∑
jgj(x)νj) (19)

where νj are the parameters of the distribution and gj are
fixed features of the family, such as (1, x, x2) in the Gaus-
sian case. To work with unnormalized distributions, we
make g0(x) = 1 a feature, whose corresponding parameter
ν0 captures the scale of the distribution. To ensure the dis-
tribution is proper, there may be constraints on the νj , e.g.
the variance of a Gaussian must be positive.

KL-projection for exponential families has a simple inter-
pretation. Substituting (19) into the KL-divergence, we
find that the minimum is achieved at any member of F
whose expectation of gj matches that of p, for all j:

q = proj[p] ⇐⇒ ∀j
∫

x

gj(x)q(x)dx =

∫

x

gj(x)p(x)dx

(20)
For example, if F is the set of Gaussians, then proj[p]
is the unique Gaussian whose mean, variance, and scale
matches p. Equation (16) in the fixed-point scheme reduces
to computing the expectations of p(x)αq(x)1−α and setting
q′(x) to match those expectations.

3.3 Fully-factorized approximations

A distribution is said to be fully-factorized if it can be writ-
ten as

q(x) = s
∏

i

qi(xi) (21)

We will use the convention that qi is normalized, so that s
represents the integral of q.

KL-projection onto a fully-factorized distribution reduces
to matching the marginals of p:

q = proj[p] ⇐⇒ ∀i
∫

x\xi
q(x)dx =

∫

x\xi
p(x)dx

(22)

which simplifies to

s =

∫

x

p(x)dx (23)

∀i qi(xi) =
1

s

∫

x\xi
p(x)dx (24)

Equation (16) in the fixed-point scheme simplifies to:

s′ =

∫

x

p(x)αq(x)1−αdx (25)

q′i(xi) =
1

s′

∫

x\xi
p(x)αq(x)1−αdx (26)

=
s1−α

s′
qi(xi)

1−α
∫

x\xi
p(x)α

∏

j 6=i
qj(xj)

1−αdx (27)

In this equation, q is assumed to have no constraints other
than being fully-factorized. Going further, we may require
q to be in a fully-factorized exponential family. A fully-
factorized exponential family has features gij(xi), involv-
ing one variable at a time. In this case, (20) becomes

q = proj[p] ⇐⇒ ∀ij
∫

x

gij(xi)q(x)dx

=

∫

x

gij(xi)p(x)dx

(28)

This can be abbreviated using a projection onto the features
of xi (which may vary with i):

proj

[∫

x\xi
q(x)dx

]
= proj

[∫

x\xi
p(x)dx

]
(29)

or sqi(xi) = proj

[∫

x\xi
p(x)dx

]
(30)

Equation (16) in the fixed-point scheme becomes:

q′i(xi) =
1

s′
proj

[∫

x\xi
p(x)αq(x)1−αdx

]
(31)

=
s1−α

s′
proj


qi(xi)1−α

∫

x\xi
p(x)α

∏

j 6=i
qj(xj)

1−αdx




(32)

Note that qi(xi)1−α is inside the projection.

When α = 0, the fixed-point scheme of section 3.1 doesn’t
apply. However, there is a simple fixed-point scheme for
minimizing KL(q || p) when q is fully-factorized and other-
wise unconstrained (the other cases are more complicated).
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Figure 4: Factor graph for the equality example

With q having form (21), the KL-divergence becomes:

KL(q || p) = s
∑

i

∫

xi

qi(xi) log qi(xi)dxi

− s
∫

x

∏

i

qi(xi) log p(x)dx

+ s log s− s+

∫

x

p(x)dx (33)

Zeroing the derivative with respect to qi(xi) gives the up-
date

qi(xi)
new ∝ exp



∫

x\xi

∏

j 6=i
qj(xj) log p(x)dx


 (34)

which is analogous to (27) with α → 0. Cycling through
these updates for all i gives a coordinate descent procedure.
Because each sub-problem is convex, the procedure must
converge to a local minimum.

3.4 Equality example

This section considers a concrete example of minimizing
α-divergence over fully-factorized distributions, illustrat-
ing the difference between different divergences, and by ex-
tension, different message-passing schemes. Consider a bi-
nary variable xwhose distribution is px(0) = 1/4, px(1) =
3/4. Now add a binary variable y which is constrained
to equal x. The marginal distribution for x should be un-
changed, and the marginal distribution for y should be the
same as for x: py(0) = 1/4. However, this is not necessar-
ily the case when using approximate inference.

These two pieces of information can be visualized as a fac-
tor graph (figure 4). The joint distribution of x and y can
be written as a matrix:

p(x, y) =
x

[
1/4 0
0 3/4

]

y
(35)

This distribution has two modes of different height, similar
to the example in figure 1.

Let’s approximate this distribution with a fully-factorized
q (21), minimizing different α-divergences. This approxi-
mation has 3 free parameters: the total mass s, qx(0), and

qy(0). We can solve for these parameters analytically. By
symmetry, we must have qy(0) = qx(0). Furthermore, at a
fixed point q = q′. Thus (27) simplifies as follows:

q′x(x) =
s1−α

s′
qx(x)1−α∑

y

p(x, y)αqy(y)1−α
(36)

qx(x)α = s−α
∑

y

p(x, y)αqx(y)1−α (37)

qx(0)α = s−αpx(0)αqx(0)1−α (38)

qx(0)2α−1 = s−αpx(0)α (39)

qx(1)2α−1 = s−αpx(1)α (40)
(
qx(0)

qx(1)

)2α−1

=

(
px(0)

px(1)

)α
(41)

qx(0) =

{
px(0)α/(2α−1)

px(0)α/(2α−1)+px(1)α/(2α−1) α > 1/2

0 α ≤ 1/2
(42)

s = px(1)qx(1)(1−2α)/α (43)

When α = 1, corresponding to running belief propagation,
the result is (qx(0) = px(0), s = 1) which means

qBP(x, y) =

[
1/4
3/4

]

x

[
1/4
3/4

]

y
=

x

[
1/16 3/16
3/16 9/16

]

y
(44)

The approximation matches the marginals and total mass of
p. Because the divergence is inclusive, the approximation
includes both modes, and smooths over the zeros. It over-
represents the higher mode, making it 9 times higher than
the other, while it should only be 3 times higher.

When α = 0, corresponding to running mean-field, or in
fact when α ≤ 1/2, the result is (qx(0) = 0, s = px(1))
which means

qMF(x, y) = 3/4

[
0
1

]

x

[
0
1

]

y
=

x

[
0 0
0 3/4

]

y
(45)

This divergence preserves the zeros, forcing it to model
only one mode, whose height is represented correctly.
There are two local minima in the minimization, corre-
sponding to the two modes—the global minimum, shown
here, models the more massive mode. The approximation
does not preserve the marginals or overall mass of p.

At the other extreme, when α→∞, the result is (qx(0) =√
px(0)√

px(0)+
√
px(1)

, s = (
√
px(0) +

√
px(1))2) which means

q∞(x, y) =
(1 +

√
3)2

4

[
1

1+
√

3√
3

1+
√

3

]

x

[
1

1+
√

3√
3

1+
√

3

]

y

(46)

=
x

[
1/4

√
3/4√

3/4 3/4

]

y

(47)
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As expected, the approximation is a point-wise upper
bound to p. It preserves both peaks perfectly, but smooths
away the zeros. It does not preserve the marginals or total
mass of p.

From these results, we can draw the following conclusions:

• None of the approximations is inherently superior. It
depends on what properties of p you care about pre-
serving.

• Fitting a fully-factorized approximation does not im-
ply trying to match the marginals of p. It depends
on what properties the divergence measure is trying to
preserve. Using α = 0 is equivalent to saying that ze-
ros are more important to preserve than marginals, so
when faced with the choice, mean-field will preserve
the zeros.

• Under approximate inference, adding a new variable
(y, in this case) to a model can change the estimation
of existing variables (x), even when the new variable
provides no information. For example, when using
mean-field, adding y suddenly makes us believe that
x = 1.

4 Message-passing

This section describes a general message-passing scheme
to (approximately) minimize a given divergence measure
D. Mean-field methods, belief propagation, and expecta-
tion propagation are all included in this scheme.

The procedure is as follows. We have a distribution p and
we want to find q ∈ F that minimizes D(p || q). First,
we must restrict F to be an exponential family. Then
we will write the distribution p as a product of factors,
p(x) =

∏
a fa(x), as in a Bayesian network. Each factor

will be approximated by a member of F , such that when
we multiply these approximations together we get a q ∈ F
that has a small value of D(p || q). The best approximation
of each factor depends on the rest of the network, giving
a chicken-and-egg problem. This is solved by an iterative
message-passing procedure where each factor sends its ap-
proximation to the rest of the net, and then recomputes its
approximation based on the messages it receives.

The first step is to choose an exponential family. The rea-
son to use exponential families is closure under multiplica-
tion: the product of any distributions in the family is also
in the family.

The next step is to write the original distribution p as a
product of nonnegative factors:

p(x) =
∏

a

fa(x) (48)

This defines the specific way in which we want to divide
the network, and is not unique. Each factor can depend on

several, perhaps all, of the variables of p. By approximating
each factor fa by f̃a ∈ F , we get an approximation divided
in the same way:

f̃a(x) = exp(
∑
jgj(x)τaj) (49)

q(x) =
∏

a

f̃a(x) (50)

Now we look at the problem from the perspective of a given
approximate factor f̃a. Define q\a(x) to be the product of
all other approximate factors:

q\a(x) = q(x)/f̃a(x) =
∏

b 6=a
f̃b(x) (51)

Similarly, define p\a(x) =
∏
b 6=a fa(x). Then factor

f̃a seeks to minimize D(fap
\a || f̃aq\a). To make this

tractable, assume that the approximations we’ve already
made, q\a(x), are a good approximation to the rest of the
network, i.e. p\a ≈ q\a, at least for the purposes of solving
for f̃a. Then the problem becomes

f̃a(x) = argminD(fa(x)q\a(x) || f̃a(x)q\a(x)) (52)

This problem is tractable, provided we’ve made a sensi-
ble choice of factors. It can be solved with the procedures
of section 3. Cycling through these coupled sub-problems
gives the message-passing algorithm:

Generic Message Passing

• Initialize f̃a(x) for all a.

• Repeat until all f̃a converge:

1. Pick a factor a.
2. Compute q\a via (51).
3. Using the methods of section 3:

f̃a(x)new =

argminD(fa(x)q\a(x) || f̃a(x)q\a(x))

This algorithm can be interpreted as message passing be-
tween the factors fa. The approximation f̃a is the message
that factor a sends to the rest of the network, and q\a is the
collection of messages that factor a receives (its “inbox”).
The inbox summarizes the behavior of the rest of the net-
work.

4.1 Fully-factorized case

When q is fully-factorized as in section 3.3, message-
passing has an elegant graphical interpretation via factor
graphs. Instead of factors passing messages to factors, mes-
sages move along the edges of the factor graph, between
variables and factors, as shown in figure 5. (The case where
q is structured can also be visualized on a graph, but a more
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x1

x2

f1 f2

mx1→f1(x1) mf2→x1(x1)

mf2→x2(x2)mx2→f1(x2)

Figure 5: Message-passing on a factor graph

complex type of graph known as a structured region graph
(Welling et al., 2005).)

Because q is fully-factorized, the approximate factors will
be fully-factorized into messages ma→i from factor a to
variable i:

f̃a(x) =
∏

i

ma→i(xi) (53)

Individual messages need not be normalized, and need not
be proper distributions.

The inboxes q\a(x) will factorize in the same way as q.
We can collect all terms involving the same variable xi, to
define messages mi→a from variable i to factor a:

mi→a(xi) =
∏

b6=a
mb→i(xi) (54)

q\a(x) =
∏

b6=a

∏

i

mb→i(xi) =
∏

i

mi→a(xi) (55)

This implies qi(xi) = ma→i(xi)mi→a(xi) for any a.

Now solve (52) in the fully-factorized case. If D is an α-
divergence, we can apply the fixed-point iteration of sec-
tion 3.1. Substitute p(x) = fa(x)q\a(x) and q(x) =
f̃a(x)q\a(x) into (25) to get

s′ =

∫

x

fa(x)αf̃a(x)1−αq\a(x)dx (56)

=

∫

x

fa(x)α
∏

j

ma→j(xj)
1−αmj→a(xj)dx (57)

Make the same substitution into (31):

q′i(xi) =
1

s′
proj

[∫

x\xi
fa(x)αf̃a(x)1−αq\a(x)dx

]

(58)

ma→i(xi)
′mi→a(xi) =

1

s′
×

proj



∫

x\xi
fa(x)α

∏

j

ma→j(xj)
1−αmj→a(xj)dx




(59)

ma→i(xi)
′ =

1

s′mi→a(xi)
proj

[
ma→i(xi)

1−αmi→a(xi)

∫

x\xi
fa(x)α

∏

j 6=i
ma→j(xj)

1−αmj→a(xj)dx


 (60)

A special case arises if xi does not appear in fa(x).
Then the integral in (60) becomes constant with respect
to xi and the projection is exact, leaving ma→i(xi)′ ∝
ma→i(xi)1−α. In other words, ma→i(xi) = 1. With this
substitution, we only need to propagate messages between
a factor and the variables it uses.

The algorithm becomes:

Fully-Factorized Message Passing

• Initialize ma→i(xi) for all (a, i).

• Repeat until all ma→i converge:

1. Pick a factor a.
2. Compute the messages into the factor via (54).
3. Compute the messages out of the factor via (60)

(if D is an α-divergence), and apply a step-size
ε (17).

If D is not an α-divergence, then the outgoing message
formula will change but the overall algorithm is the same.

4.2 Local vs. global divergence

The generic message passing algorithm is based on
the assumption that minimizing the local divergences
D(fa(x)q\a(x) || f̃a(x)q\a(x)) approximates minimizing
the global divergence D(p || q). An interesting question
is whether, in the end, we are minimizing the divergence
we intended, or if the result resembles some other diver-
gence. In the case α = 0, minimizing local divergences
corresponds exactly to minimizing global divergence, as
shown in section 5. Otherwise, the correspondence is
only approximate. To measure how close the correspon-
dence is, consider the following experiment: given a global
α-divergence index αG, find the corresponding local α-
divergence index αL which produces the best q according
to αG.

This experiment was carried out with p(x) equal to a 4× 4
Boltzmann grid, i.e. binary variables connected by pairwise
factors:

p(x) =
∏

i

fi(xi)
∏

ij∈E
fij(xi, xj) (61)

The graph E was a grid with four-connectivity. The unary
potentials had the form fi(xi) = [exp(θi1) exp(θi2)],
and the pairwise potentials had the form fij(xi, xj) = 1 exp(wij)
exp(wij) 1

. The goal was to approximate p

with a fully-factorized q. For a given local divergence αL,
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Figure 6: The best local α for minimizing a given global
α-divergence, across ten networks with (a) random or (b)
positive couplings.

this was done using the fractional BP algorithm of section 7
(all factors used the same αL). Then DαG(p || q) was com-
puted by explicit summation over x (enumerating all states
of the network). Ten random networks were generated with
(θ, w) drawn randomly from a uniform distribution over
[−1, 1]. The results are shown in figure 6(a). For individ-
ual networks, the best αL sometimes differs from αG when
αG > 1 (not shown), but the one best αL across all 10 net-
works (shown) is αL = αG, with a slight downward bias
for large αG. Thus by minimizing localized divergence we
are close to minimizing the same divergence globally.

In general, if the approximating family F is a good fit to
p, then we should expect local divergence to match global
divergence, since q\a ≈ p\a. In a graph with random po-
tentials, the correlations tend to be short, so approximat-
ing p\a with a fully-factorized distribution does little harm
(there is not much over-counting due to loops). If p has
long-range correlations, then q\a will not fit as well, and
we expect a larger discrepancy between local and global
divergence. To test this, another experiment was run with
wij = 1 on all edges. In this case, there are long-range cor-
relations and message passing suffers from over-counting
effects. The results in figure 6(b) now show a consistent
discrepancy between αG and αL. When αG < 0, the best
αL = αG as before. But when αG ≥ 0, the best αL was
strictly larger than αG (the relationship is approximately
linear, with slope > 1). To understand why large αL could
be good, recall that increasing α leads to flatter approxima-
tions, which try to cover all of p. By making the local ap-
proximations flatter, we make the messages weaker, which
reduces the over-counting. This example shows that if q
is a poor fit to p, then we might do better by choosing a
local divergence different from the global one we want to
minimize.

We can also improve the quality of the approximation by
changing the number of factors we divide p into. In the ex-
treme case, we can use only one factor to represent all of
p, in which case the local divergence is exactly the global

divergence. By using more factors, we simplify the com-
putations, at the cost of making additional approximations.

4.3 Mismatched divergences

It is possible to run message passing with a different diver-
gence measure being minimized for each factor a. For ex-
ample, one factor may use α = 1 while another uses α = 0.
The motivation for this is that some divergences may be
easier to minimize for certain factors (Minka, 2004). The
effect of this on the global result is unclear, but locally the
observations of section 2 will continue to hold.

While less motivated theoretically, mismatched diver-
gences are very useful in practice. Henceforth we will al-
low each factor a to have its own divergence index αa.

4.4 Estimating Z

Just as in section 2, we can analytically derive the Z̃ that
would be computed by message-passing, for any approxi-
mating family. Let q(x) =

∏
a f̃a(x), possibly unnormal-

ized, where f̃a(x) are any functions in the familyF . Define
the rescaled factors

f̃ ′a(x) = saf̃a(x) (62)

q′(x) =
∏

a

f̃ ′a(x) = (
∏

a

sa)q(x) (63)

Z̃ =

∫

x

q′(x)dx =

(∫

x

q(x)dx

)∏

a

sa (64)

The scale sa that minimizes local α-divergence is

sa =





exp




∫

x

q(x) log
fa(x)

f̃a(x)
dx

∫

x

q(x)dx


 if αa = 0




∫

x

(
fa(x)

f̃a(x)

)αa
q(x)dx

∫

x

q(x)dx




1/αa

otherwise

(65)

Plugging this into (64) gives (for αa 6= 0):

Z̃ =

(∫

x

q(x)dx

)1−∑a 1/αa

×

∏

a

(∫

x

(
fa(x)

f̃a(x)

)αa
q(x)dx

)1/αa
(66)

Because the mass of q estimates the mass of p, (66) pro-
vides an estimate of

∫
x
p(x)dx (the partition function or

model evidence). Compared to (8), the minimum of the
global divergence, this estimate is more practical to com-
pute since it involves integrals over one factor at a time.
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Interestingly, when α = 0 the local and global estimates
are the same. This fact is explored in section 5.

Theorem 4 For any set of messages f̃ :

Z̃ ≤
∫

x

p(x)dx if αa ≤ 0 (67a)

Z̃ ≥
∫

x

p(x)dx if
αa > 0∑

a1/αa ≤ 1
(67b)

Proof: Appendix C proves the following generalizations
of the Hölder inequality:

E[
∏
ixi] ≥

∏
iE[xαii ]1/αi if αi ≤ 0 (68a)

E[
∏
ixi] ≤

∏
iE[xαii ]1/αi if

αi > 0∑
i1/αi ≤ 1

(68b)

Substituting xi = fi/f̃i and taking the expectations with
respect to the normalized distribution q/

∫
x
q(x)dx gives

exactly the bounds in the theorem.

The upper bound (67b) is equivalent to that of Wainwright
et al. (2005b), who proved it in the case where p(x) was an
exponential family, but in fact it holds for any nonnegative
p(x). Appendix D provides an alternative proof of (67b),
using arguments similar to Wainwright et al. (2005b).

4.5 The free-energy function

Besides its use as an estimate of the model evidence, (66)
has another interpretation. As a function of the message
parameters τ a, its stationary points are exactly the fixed
points of α-divergence message passing (Minka, 2004;
Minka, 2001a). In other words, (66) is the surrogate ob-
jective function that message-passing is optimizing, in lieu
of the intractable global divergence Dα(p || q). Because
mean-field, belief propagation, expectation propagation,
etc. are all instances of α-divergence message passing, (66)
describes the surrogate objective for all of them.

Now that we have established the generic message-passing
algorithm, let’s look at specific instances of it.

5 Mean-field

This section shows that the mean-field method is a spe-
cial case of the generic message-passing algorithm. In the
mean-field method (Jordan et al., 1999; Jaakkola, 2000) we
minimize KL(q || p), the exclusive KL-divergence. Why
should we minimize exclusive KL, versus other divergence
measures? Some authors motivate the exclusive KL by
the fact that it provides a bound on the model evidence
Z =

∫
x
p(x)dx, as shown by (9a). However, theorem 2

shows that there are many other upper and lower bounds
we could obtain, by minimizing other divergences. What

really makes α = 0 special is its computational proper-
ties. Uniquely among all α-divergences, it enjoys an equiv-
alence between global and local divergence. Rather than
minimize the global divergence directly, we can apply the
generic message-passing algorithm of section 4, to get the
variational message-passing algorithm of Winn & Bishop
(2005). Uniquely for α = 0, the message-passing fixed
points are exactly the stationary points of the global KL-
divergence.

To get variational message-passing, use a fully-factorized
approximation with no exponential family constraint (sec-
tion 3.3). To minimize the local divergence (52), substitute
p(x) = fa(x)q\a(x) and q(x) = f̃a(x)q\a(x) into the
fixed-point scheme for α = 0 (34) to get:

qi(xi)
new ∝ exp(

∫

x\xi

∏

j 6=i
qj(xj) log fa(x)dx)×

exp(

∫

x\xi

∏

j 6=i
qj(xj) log q\a(x)dx) (69)

ma→i(xi)
newmi→a(xi) ∝

exp(

∫

x\xi

∏

j 6=i
ma→j(xj)mj→a(xj) log fa(x)dx)×

exp(



∫

x\xi

∏

j 6=i
qj(xj)dx


 logmi→a(xi)) (70)

ma→i(xi)
new ∝

exp(

∫

x\xi

∏

j 6=i
ma→j(xj)mj→a(xj) log fa(x)dx) (71)

Applying the template of section 4.1, the algorithm be-
comes:
Variational message-passing

• Initialize ma→i(xi) for all (a, i).

• Repeat until all ma→i converge:

1. Pick a factor a.
2. Compute the messages into the factor via (54).
3. Compute the messages out of the factor via

(71).

The above algorithm is for general factors fa. However,
because VMP does not project the messages onto an expo-
nential family, they can get arbitrarily complex. (Section 6
discusses this issue with belief propagation.) The only way
to control the message complexity is to restrict the factors
fa to already be in an exponential family. This is the re-
striction on fa adopted by Winn & Bishop (2005).

Now we show that this algorithm has the same fixed points
as the global KL-divergence. Let q have the exponential
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form (19) with free parameters νj . The global divergence
is

KL(q || p) =

∫

x

q(x) log
q(x)

p(x)
dx +

∫

x

(p(x)− q(x))dx

(72)

Zeroing the derivative with respect to νj gives the station-
ary condition:

d

dνj
KL(q || p) =

∫

x

gj(x)q(x) log
q(x)

p(x)
dx = 0 (73)

Define the matrices H and B with entries

hjk =

∫

x

gj(x)gk(x)q(x)dx (74)

baj =

∫

x

gj(x)q(x) log fa(x)dx (75)

Substituting the exponential form of q into (73) gives

Hν −
∑

a

ba = 0 (76)

In message-passing, the local divergence for factor a is

KL(q(x) || fa(x)q\a(x)) =
∫

x

q(x) log
f̃a(x)

fa(x)
dx +

∫

x

(fa(x)− f̃a(x))q\a(x)dx

(77)

Here the free parameters are the τaj from (49). The deriva-
tive of the local divergence with respect to τaj gives the
stationary condition:

∫

x

gj(x)q(x) log
f̃a(x)

fa(x)
dx = 0 (78)

Hτ a − ba = 0 (79)

where
∑

a

τ a = ν (80)

Now we show that the conditions (76) and (79) are equiv-
alent. In one direction, if we have τ ’s satisfying (79) and
(80), then we have a ν satisfying (76). In the other direc-
tion, if we have a ν satisfying (76), then we can compute
(H,B) from (74,75) and solve for τ a in (79). (If H is sin-
gular, there may be multiple valid τ ’s.) The resulting τ ’s
will satisfy (80), providing a valid message-passing fixed
point. Thus a message-passing fixed point implies a global
fixed point and vice versa.

From the discussion in section 2, we expect that in multi-
modal cases this method will represent the most massive
mode of p. When the modes are equally massive, it will
pick one of them at random. This symmetry-breaking
property is discussed by Jaakkola (2000). Sometimes
symmetry-breaking is viewed as a problem, while other
times it is exploited as a feature.

6 Belief Propagation and EP

This section describes how to obtain loopy belief prop-
agation (BP) and expectation propagation (EP) from the
generic message-passing algorithm. In both cases, we lo-
cally minimize KL(p || q), the inclusive KL-divergence.
Unlike the mean-field method, we do not necessarily min-
imize global KL-divergence exactly. However, if inclusive
KL is what you want to minimize, then BP and EP do a
better job than mean-field.

To get loopy belief propagation, use a fully-factorized ap-
proximation with no explicit exponential family constraint
(section 3.3). This is equivalent to using an exponential
family with lots of indicator features:

gij(xi) = δ(xi − j) (81)

where j ranges over the domain of xi. Since α = 1, the
fully-factorized message equation (60) becomes:

ma→i(xi)
′ ∝

∫

x\xi
fa(x)

∏

j 6=i
mj→a(xj)dx (82)

Applying the template of section 4.1, the algorithm is:

Loopy belief propagation

• Initialize ma→i(xi) for all (a, i).

• Repeat until all ma→i converge:

1. Pick a factor a.
2. Compute the messages into the factor via (54).
3. Compute the messages out of the factor via

(82), and apply a step-size ε.

It is possible to improve the performance of belief prop-
agation by clustering variables together, corresponding to
a partially-factorized approximation. However, the cost of
the algorithm grows rapidly with the amount of clustering,
since the messages get exponentially more complex.

Because BP does not project the messages onto an expo-
nential family, they can have unbounded complexity. When
discrete and continuous variables are mixed, the messages
in belief propagation can get exponentially complex. Con-
sider a dynamic Bayes net with a continuous state whose
dynamics is controlled by discrete hidden switches (Hes-
kes & Zoeter, 2002). As you go forward in time, the state
distribution acquires multiple modes due to the unknown
switches. The number of modes is multiplied at every time
step, leading to an exponential increase in message com-
plexity through the network. The only way to control the
complexity of BP is to restrict the factors to already be in
an exponential family. In practice, this limits BP to fully-
discrete or fully-Gaussian networks.

Expectation propagation (EP) is an extension of belief
propagation which fixes these problems. The essential dif-
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ference between EP and BP is that EP imposes an exponen-
tial family constraint on the messages. This is useful in two
ways. First, by bounding the complexity of the messages,
it provides practical message-passing in general networks
with continuous variables. Second, EP reduces the cost of
clustering variables, since you don’t have to compute the
exact joint distribution of a cluster. You could fit a jointly
Gaussian approximation to the cluster, or you could fit a
tree-structured approximation to the cluster (Minka & Qi,
2003).

With an exponential family constraint, the fully-factorized
message equation (60) becomes:

ma→i(xi)
′ ∝ 1

mi→a(xi)
proj [mi→a(xi)

∫

x\xi
fa(x)

∏

j 6=i
mj→a(xj)dx


 (83)

Applying the template of section 4.1, the algorithm is:

Expectation propagation

• Initialize ma→i(xi) for all (a, i).

• Repeat until all ma→i converge:

1. Pick a factor a.
2. Compute the messages into the factor via (54).
3. Compute the messages out of the factor via

(83), and apply a step-size ε.

7 Fractional BP and Power EP

This section describes how to obtain fractional belief prop-
agation (FBP) and power expectation propagation (Power
EP) from the generic message-passing algorithm. In this
case, we locally minimize any α-divergence.

Previous sections have already derived the relevant equa-
tions. The algorithm of section 4.1 already implements
Power EP. Fractional BP excludes the exponential family
projection. If you drop the projection in the fully-factorized
message equation (60), you get:

ma→i(xi)
′ ∝ ma→i(xi)

1−α×∫

x\xi
fa(x)α

∏

j 6=i
ma→j(xj)

1−αmj→a(xj)dx (84)

Equating ma→i(xi) on both sides gives

ma→i(xi)
′ ∝



∫

x\xi
fa(x)α

∏

j 6=i
ma→j(xj)

1−αmj→a(xj)dx




1/α

(85)

which is the message equation for fractional BP.

8 Tree-reweighted message passing

This section describes how to obtain tree-reweighted mes-
sage passing (TRW) from the generic message-passing al-
gorithm. In the description of Wainwright et al. (2005b),
tree-reweighted message passing is an algorithm for com-
puting an upper bound on the partition function Z =∫
x
p(x)dx. However, TRW can also be viewed as an in-

ference algorithm which approximates a distribution p by
minimizing α-divergence. In fact, TRW is a special case of
fractional BP.

In tree-reweighted message passing, each factor fa is as-
signed an appearance probability µ(a) ∈ (0, 1]. Let the
power αa = 1/µ(a). The messages Mts(xs) in Wain-
wright et al. (2005b) are equivalent to ma→i(xi)αa in this
paper. In the notation of this paper, the message equation
of Wainwright et al. (2005b) is:

ma→i(xi)
αa ∝
∫

x\xi
fa(x)αa

∏

j 6=i

∏
b6=amb→j(xj)

ma→j(xj)αa−1
dx (86)

=

∫

x\xi
fa(x)αa

∏

j 6=i
ma→j(xj)

1−αamj→a(xj)dx (87)

This is exactly the fractional BP update (85). The TRW
update is therefore equivalent to minimizing local α-
divergence. The constraint 0 < µ(a) ≤ 1 requires αa ≥ 1.
Note that (86) applies to factors of any degree, not just pair-
wise factors as in Wainwright et al. (2005b).

The remaining question is how to obtain the upper bound
formula of Wainwright et al. (2005b). Because

∑
a µ(a) 6=

1 in general, the upper bound in (67b) does not directly
apply. However, if we redefine the factors in the bound to
correspond to the trees in TRW, then (67b) gives the desired
upper bound.

Specifically, let A be any subset of factors fa, and let µ(A)
be a normalized distribution over all possible subsets. In
TRW, µ(A) > 0 only for spanning trees, but this is not
essential. Let µ(a) denote the appearance probability of
factor a, i.e. the sum of µ(A) over all subsets containing
factor a. For each subset A, define the factor-group fA
according to:

fA(x) =
∏

a∈A
fa(x)µ(A)/µ(a) (88)

These factor-groups define a valid factorization of p:

p(x) =
∏

A

fA(x) (89)

This is true because of the definition of µ(a). Similarly, if
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q(x) =
∏
a f̃a(x), then we can define approximate factor-

groups f̃A according to:

f̃A(x) =
∏

a∈A
f̃a(x)µ(A)/µ(a) (90)

which provide another factorization of q:

q(x) =
∏

A

f̃A(x) (91)

Now plug this factorization into (66), using powers αA =
1/µ(A):

Z̃ =
∏

A

(∫

x

(
fA(x)

f̃A(x)

)αA
q(x)dx

)1/αA

(92)

Because
∑
A µ(A) = 1, we have

∑
A 1/αA = 1. By the-

orem 4, (92) is an upper bound on Z. When restricted to
spanning trees, it gives exactly the upper bound of Wain-
wright et al. (2005b) (their equation 16). To see the equiv-
alence, note that exp(Φ(θ(T ))) in their notation is the same

as
∫
x

(
fA(x)

f̃A(x)

)αA
q(x)dx, because of their equations 21,

22, 58, and 59.

In Wainwright et al. (2005b), it was observed that TRW
sometimes achieves better estimates of the marginals than
BP. This seems to contradict the result of section 3, that
α = 1 is the best at estimating marginals. However, in
section 4.2, we saw that sometimes it is better for message-
passing to use a local divergence which is different from the
global one we want to minimize. In particular, this is true
when the network has purely attractive couplings. Indeed,
this was the good case for TRW observed by Wainwright
et al. (2005b) (their figures 7b and 9b).

9 Choosing a divergence measure

This section gives general guidelines for choosing a diver-
gence measure in message passing. There are three main
considerations: computational complexity, the approximat-
ing family, and the inference goal.

First, the reason we make approximations is to save compu-
tation, so if a divergence measure requires a lot of work to
minimize, we shouldn’t use it. Even among α-divergences,
there can be vast differences in computational complexity,
depending on the specific factors involved. Some diver-
gences also have lots of local minima, to trap a would-
be optimizer. So an important step in designing a mes-
sage passing algorithm should be to determine which diver-
gences are the easiest to minimize on the given problem.

Next we have the approximating family. If the approxi-
mating family is a good fit to the true distribution, then it
doesn’t matter which divergence measure you use, since
all will give similar results. The only consideration at that

point is computational complexity. If the approximating
family is a poor fit to the true distribution, then you are
probably safest to use an exclusive divergence, which only
tries to model one mode. With an inclusive divergence,
message passing probably won’t converge at all. If the ap-
proximating family is a medium fit to the true distribution,
then you need to consider the inference goal.

For some tasks, there are uniquely suited divergence mea-
sures. For example, χ2 divergence is well-suited for choos-
ing the proposal density for importance sampling (ap-
pendix E). If the task is to compute marginal distributions,
using a fully-factorized approximation, then the best choice
(among α-divergences) is inclusive KL (α = 1), because
it is the only α which strives to preserve the marginals.
Papers that compare mean-field versus belief propagation
at estimating marginals invariably find belief propagation
to be better (Weiss, 2001; Minka & Qi, 2003; Kappen &
Wiegerinck, 2001; Mooij & Kappen, 2004). This is be-
cause mean-field is optimizing for a different task. Just
because the approximation is factorized does not mean that
the factors are supposed to approximate the marginals of
p—it depends on what divergence measure they optimize.
The inclusive KL should also be preferred for estimating
the integral of p (the partition function, see section 2) or
other simple moments of p.

If the task is Bayesian learning, the situation is more com-
plicated. Here x is a parameter vector, and p(x) ≡ p(x|D)
is the posterior distribution given training data. The predic-
tive distribution for future data y is

∫
x
p(y|x)p(x)dx. To

simplify this computation, we’d like to approximate p(x)
with q(x) and predict using

∫
x
p(y|x)q(x)dx. Typically,

we are not interested in q(x) directly, but only this pre-
dictive distribution. Thus a sensible error measure is the
divergence between the predictive distributions:

D

(∫

x

p(y|x)p(x)dx

∣∣∣∣
∣∣∣∣
∫

x

p(y|x)q(x)dx

)
(93)

Because p(y|x) is a fixed function, this is a valid objective
for q(x). Unfortunately, it is different from the divergence
measures we’ve looked at so far. The measures so far com-
pare p to q point-by-point, while (93) takes averages of p
and compares these to averages of q. If we want to use al-
gorithms for α-divergence, then we need to find the α most
similar to (93).

Consider binary classification with a likelihood of the form
p(y = ±1|x, z) = φ(yxTz), where z is the input vector,
y is the label, and φ is a step function. In this case, the
predictive probability that y = 1 is Pr(xTz > 0) under
the (normalized) posterior for x. This is equivalent to pro-
jecting the unnormalized posterior onto the line xTz, and
measuring the total mass above zero, compared to below
zero. These one-dimensional projections might look like
the distributions in figure 1. By fitting a Gaussian to p(x),
we make all these projections Gaussian, which may alter
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Figure 7: Average predictive error for various alpha-
divergences on a mock classification task.

the total mass above/below zero. A good q(x) is one which
preserves the correct mass on each side of zero; no other
properties matter.

To find the α-divergence which best captures this er-
ror measure, we ran the following experiment. We first
sampled 210 random one-dimensional mixtures of two
Gaussians (means from N (0, 4), variances from squaring
N (0, 1), scale factors uniform on [0, 1]). For each one,
we fit a Gaussian by minimizing α-divergence, for several
values of α. After optimization, both p and q were nor-
malized, and we computed p(x > 0) and q(x > 0). The
predictive error was defined to be the absolute difference
|p(x > 0)− q(x > 0)|. (KL-divergence to p(x > 0) gives
similar results.) The average error for each α value is plot-
ted in figure 7. The best predictions came from α = 1 and
in general from the inclusive divergences versus the exclu-
sive ones. Exclusive divergences perform poorly because
they tend to give extreme predictions (all mass on one side).
So α = 1 seems to be the best substitute for (93) on this
task.

A task in which exclusive divergences are known to do
well is Bayesian learning of mixture models, where each
component has separate parameters. In this case, the pre-
dictive distribution depends on the posterior in a more
complex way. Specifically, the predictive distribution is
invariant to how the mixture components are indexed.
Thus

∫
x
p(y|x)p(x)dx is performing a non-local type of

averaging—over all ways of permuting the elements of x.
This is hard to capture with a point-wise divergence. For
example, if our prior is symmetric with respect to the pa-
rameters and we condition on data, then any mode in the
posterior will have a mirror copy corresponding to swap-
ping components. Minimizing an inclusive divergence will
waste resources by trying to represent all of these identi-
cal modes. An exclusive divergence, however, will focus
on one mode. This doesn’t completely solve the problem,
since there may be multiple modes of the likelihood even

for one component ordering, but it performs well in prac-
tice. This is an example of a problem where, because of the
complexity of the posterior, it is safest to use an exclusive
divergence. Perhaps with a different approximating fam-
ily, e.g. one which assumes symmetrically placed modes,
inclusive divergence would also work well.

10 Future work

The perspective of information divergences offers a vari-
ety of new research directions for the artificial intelligence
community. For example, we could construct informa-
tion divergence interpretations of other message-passing al-
gorithms, such as generalized belief propagation (Yedidia
et al., 2004), max-product versions of BP and TRW (Wain-
wright et al., 2005a), Laplace propagation (Smola et al.,
2003), and bound propagation (Leisink & Kappen, 2003).
We could improve the performance of Bayesian learning
(section 9) by finding more appropriate divergence mea-
sures and turning them into message-passing algorithms.
In networks with long-range correlations, it is difficult to
predict the best local divergence measure (section 4.2). An-
swering this question could significantly improve the per-
formance of message-passing on hard networks. By con-
tinuing to assemble the pieces of the inference puzzle, we
can make Bayesian methods easier for everyone to enjoy.
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A Ali-Silvey divergences

Ali & Silvey (1966) defined a family of convex divergence
measures which includes α-divergence as a special case.
These are sometimes called f -divergences because they are
parameterized by the choice of a convex function f . Some
properties of the α-divergence are easier to prove by think-
ing of it as an instance of an f -divergence. With appro-
priate corrections to handle unnormalized distributions, the
general formula for an f -divergence is

Df (p || q) =
1

f ′′(1)

∫
q(x)f

(
p(x)

q(x)

)
+

(f ′(1)− f(1))q(x)− f ′(1)p(x)dx (94)

where f is any convex or concave function (concave func-
tions are turned into convex ones by the f ′′ term). Evaluat-
ing f ′′(r) at r = 1 is arbitrary; only the sign of f ′′ matters.
Some examples:

KL(q || p) : f(r) = log(r)
f ′(1) = 1

f ′′(1) = −1
(95)

KL(p || q) : f(r) = r log(r)
f ′(1) = 1

f ′′(1) = 1
(96)

Dα(p || q) : f(r) = rα
f ′(1) = α

f ′′(1) = −α(1− α)

(97)

The L1 distance
∫
|p(x) − q(x)|dx can be obtained as

f(r) = |r − 1| if we formally define (f ′(1) = 0, f ′′(1) =
1), for example by taking a limit. The f -divergences are
a large class, but they do not include e.g. the L2 distance∫

(p(x)− q(x))2dx.

The derivatives with respect to p and q are:

dDf (p || q)
dp(x)

=
1

f ′′(1)

(
f ′
(
p(x)

q(x)

)
− f ′(1)

)
(98)

dDf (p || q)
dq(x)

=
1

f ′′(1)

(
f

(
p(x)

q(x)

)
− f(1) (99)

−p(x)

q(x)
f ′
(
p(x)

q(x)

)
+ f ′(1)

)

Therefore the divergence and its derivatives are zero at
p = q. It can be verified by direct differentiation that Df

is jointly convex in (p, q) (the Hessian is positive semidefi-
nite), therefore it must be ≥ 0 everywhere.

As illustrated by (95,96), you can swap the position of p
and q in the divergence by replacing f with rf(1/r) (which
is convex if f is convex). Thus p and q can be swapped in
the definition (94) without changing the essential family.
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B Proof of Theorem 1

Theorem 1 (Liapunov’s inequality) If x is a non-
negative random variable, and we have two real numbers
α2 > α1, then:

E[xα2 ]1/α2 ≥ E[xα1 ]1/α1 (100)

where α = 0 is interpreted as the limit

lim
α→0

E[xαi ]1/α = exp(E[log xi]) (101)

Proof: It is sufficient to prove the cases α1 ≥ 0 and α2 ≤ 0
since the other cases follow by transitivity. If f is a convex
function, then Jensen’s inequality tells us that

E[f(xα1)] ≥ f(E[xα1 ]) (102)

If α2 > α1 > 0, then f(x) = xα2/α1 is convex, leading to:

E[xα2 ] ≥ E[xα1 ]α2/α1 (103)

E[xα2 ]1/α2 ≥ E[xα1 ]α1 (104)

If 0 > α2 > α1, then f(x) = xα2/α1 is concave, leading
to:

E[xα2 ] ≤ E[xα1 ]α2/α1 (105)

E[xα2 ]1/α2 ≥ E[xα1 ]α1 (106)

If α2 > α1 = 0, Jensen’s inequality for the logarithm says

E[log xα2 ] ≤ logE[xα2
i ] (107)

α2E[log xi] ≤ logE[xα2
i ] (108)

E[log xi] ≤
1

α2
logE[xα2

i ] (109)

exp(E[log xi]) ≤ E[xα2
i ]1/α2 (110)

If 0 = α2 > α1, Jensen’s inequality for the logarithm says

E[log xα1 ] ≤ logE[xα1
i ] (111)

α1E[log xi] ≤ logE[xα1
i ] (112)

E[log xi] ≥
1

α1
logE[xα1

i ] (113)

exp(E[log xi]) ≥ E[xα1
i ]1/α1 (114)

This proves all cases.

C Hölder inequalities

Theorem 5 For any set of non-negative random variables
x1, ..., xn (not necessarily independent) and a set of posi-
tive numbers α1, ..., αn satisfying

∑
i 1/αi ≤ 1:

E[
∏
ixi] ≤

∏
iE[xαii ]1/αi (115)

Proof: Start with the case
∑
i 1/αi = 1. By Jensen’s in-

equality for the logarithm we know that

log(
∑

i

xαii
αi

) ≥
∑

i

1

αi
log(xαii ) =

∑

i

log(xi) (116)

Reversing this gives:
∏

i

xi ≤
∑

i

xαii /αi (117)

Now consider the ratio of the lhs of (115) over the rhs:

E[
∏
ixi]∏

iE[xαii ]1/αi
= E

[∏

i

xi
E[xαii ]1/αi

]
(118)

≤ E

[∑

i

1

αi

xαii
E[xαii ]

]
by (117)

(119)

=
∑

i

1

αi

E[xαii ]

E[xαii ]
= 1 (120)

Now if
∑
i 1/αi < 1, this means some αi is larger than

needed. By Th. 1, this will only increase the right hand
side of (115).

Theorem 6 For any set of non-negative random variables
x1, ..., xn and a set of non-positive numbers α1, ..., αn ≤
0:

E[
∏
ixi] ≥

∏
iE[xαii ]1/αi (121)

where the case αi = 0 is interpreted as the limit in (101).

Proof: By Th.1, this inequality is tightest for αi = 0. By
Jensen’s inequality for the logarithm, we know that

logE[
∏
ixi] ≥ E[log

∏
ixi] =

∑

i

E[log xi] (122)

This proves the case αi = 0 for all i:

E[
∏
ixi] ≥

∏
i exp(E[log xi]) (123)

By Th.1, setting αi < 0 will only decrease the right hand
side.
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D Alternate upper bound proof

Define an exponential family with parameters (ν,a):

p(x;ν,a) =

Z(ν,a)−1 exp(
∑
kak log fk(x) +

∑
jνjgj(x)) (124)

where logZ(ν,a) =

log

∫

x

exp(
∑
kak log fk(x) +

∑
jνjgj(x))dx (125)

Because it is the partition function of an exponential family,
logZ is convex in (ν,a). Define a set of parameter vectors
((λ1,a1), ..., (λn,an)) and non-negative weights c1, ..., cn
which sum to 1. Then Jensen’s inequality says

logZ (
∑
iciλi,

∑
iciai) ≤

∑

i

ci logZ(λi,ai) (126)

where
∑

i

ci = 1 (127)

Because it is a sum of convex functions, this upper bound
is convex in ((λ1,a1), ..., (λn,an)). The integral that we
are trying to bound is

∫
x
p(x)dx = Z(0,1). Plugging this

into (126) and exponentiating gives
∫

x

p(x)dx ≤
∏

i

Z(λi,ai)
ci (128)

provided that
∑

i

ciλi = 0 (129)

∑

i

ciai = 1 (130)

Choose ai to be the vector with 1/ci in position i and 0
elsewhere. This satisfies (130) and the bound simplifies to:
∫

x

p(x)dx ≤
∏

i

(∫

x

fi(x)1/ci exp(
∑
jλijgj(x))dx

)ci

(131)

provided that
∑

i

ciλi = 0 (132)

To put this in the notation of (66), define

ci = 1/αi (133)

λi =
∑

j

τ j − αiτ i (134)

where τ i is the parameter vector of f̃i(x) via (49). This
definition automatically satisfies (132) and makes (131) re-
duce to (67b), which is what we wanted to prove.

E Alpha-divergence and importance
sampling

Alpha-divergence has a close connection to importance
sampling. Suppose we wish to estimate Z =

∫
x
p(x)dx.

In importance sampling, we draw n samples from a nor-
malized proposal distribution q(x), giving x1, ..., xn. Then
Z is estimated by:

Z̃ =
1

n

∑

i

p(xi)

q(xi)
(135)

This estimator is unbiased, because

E[Z̃] =
1

n

∑

i

∫

x

p(x)

q(x)
q(x)dx = Z (136)

The variance of the estimate (across different random
draws) is

var(Z̃) =
1

n2

∫

x

p(x)2

q(x)2
q(x)dx− 1

n2
Z2 (137)

An optimal proposal distribution minimizes var(Z̃), i.e. it
minimizes

∫
x
p(x)2

q(x) dx over q. This is equivalent to mini-
mizing α-divergence with α = 2. Hence the problem of
selecting an optimal proposal distribution for importance
sampling is equivalent to finding a distribution with small
α-divergence to p.
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