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• Want compact summary of posterior on 
mixture parameters given data:

• Define     to be parameters of component 
which generated

• Approximate the posterior                         
for 

The problem
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Infinite mixture model

• Dirichlet process prior:

• Gaussian components with                            
known variance:
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Expectation Propagation

• Approximate a function by a simpler one:

• Where each           lives in tractable family
• Iterate the fixed-point equations:
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• Want to approximate

• Likelihood terms are already Gaussian
• Prior terms are approximated by factorized 

Gaussians:

• are “messages”
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• Deletion:

• Inclusion: change         to match moments of

• Update:

EP algorithm
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Moment matching
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Usage

• Input is hyperparameters and data:

• Output is Gaussian posteriors and soft 
assignments:

• Expected number of components:
– Prior expected number:
– Set these equal to update
– Can be interleaved with EP iterations
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Alpha = 0.38
means 1.82
components



Order dependence

• Dirichlet process is exchangeable, but 
approximation quality does depend on order

• Best orderings are anti-correlated
– Nearby points are far apart in the ordering

• Ordering is chosen by greedy selection of 
furthest point from picked points



Random orderings

‘x’ ordering
chosen by
furthest-point
heuristic





20 points in one dimension
(ground truth from Gibbs)



20 points in two dimensions
(ground truth from Gibbs)



Computational cost

• Cost for EP grows faster than Gibbs
• Because it makes soft assignments, EP pays 

cost of maximum number of clusters (n)
• Because it makes hard assignments, Gibbs 

pays cost of actual number of clusters (<<n)
• Similar to EM versus k-means clustering
• Ignoring unlikely assignments would help



Accuracy of EP is limited

• Message to     is weighted by prob of 
picking it (not prob of being in same 
cluster)

• Consider close-packed data
• picks     , so that
• can pick    or    equally, will send “half-

weighted” message to each
• is weighted half as much as it should be
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Conclusions

• EP with factorized approximation can give 
rough estimate faster than Gibbs

• Estimating hyperparameters is very easy
• But for high accuracy or high dimension, 

Gibbs is still method of choice



Suggestions for improvement

• The Dirichlet recursion can be written in different 
ways
– But doesn’t seem to help

• Posterior can be represented in terms of 
assignment variables, instead of parameters

• Approximation can be tree-structured instead of 
factorized (NIPS’03), allowing equality 
constraints to be remembered
– Structure of tree must be learned from data


