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The problem

 Want compact summary of posterior on
mixture parameters given data: p(0 | Data)

* Detine 9. to be parameters of component
which generated x,

e Approximate the posterior
for 0, 6,—0,— 6
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Infinite mixture model

e Dirichlet process prior:
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& 1is the “innovation” parameter p0,) ~ N(m,,V,)

e (Gaussian components with
known variance:
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X Xy, A3

T
91—> 92—> 93



Expectation Propagation

e Approximate a function by a simpler one:

px) =[]/ - g =[]f®

 Where each f,(x) lives in tractable family

e Iterate the fixed-point equations:
f. (%) =argmin D(£, ()" ()1l £, (%)g" (%))

where ¢ h (x) = H ]?b (x)
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 Want to approximate

[1rGx16)p0,16.)=]]q6)

Q(Hl) ~ N(mla‘/l)

e Likelihood terms are already Gaussian

e Prior terms are approximated by factorized

Gaussians: p(0.10.)= £.(0) = F(8) = Hf] ©))

e [, are “‘messages” A S
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EP algorithm

\i 0
e Deletion: g (0)= ]%(( 9))

* Inclusion: change ¢(6) to match moments of
p(6, |9<i)q\i (0)

o Update: ]7_(9): q(@) :H q(Qj)
| q\l(e) j<i q\l(ej)




Moment matching
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Usage

e Input is hyperparameters and data:
(o, X, my,Vy, X, X))
e QOutput 1s Gaussian posteriors and soft
assignments: (m,,V,,r;)
» Expected number of components: ) _ 7
— Prior expected number: a(y (o +n)-y(x))

— Set these equal to update o

— Can be interleaved with EP iterations
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| Alpha =0.38
| means 1.82
components




Order dependence

e Dirichlet process 1s exchangeable, but
approximation quality does depend on order

e Best orderings are anti-correlated
— Nearby points are far apart in the ordering

e Ordering 1s chosen by greedy selection of
furthest point from picked points



error in means
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20 points 1n one dimension
(ground truth from Gibbs)
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20 points 1n two dimensions

(ground truth from Gibbs)
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Computational cost

Cost for EP grows faster than Gibbs

Because 1t makes soft assignments, EP pays
cost of maximum number of clusters (n)

Because 1t makes hard assignments, Gibbs
pays cost of actual number of clusters (<<n)

Similar to EM versus k-means clustering

Ignoring unlikely assignments would help



Accuracy of EP 1s limited

Message to 6, 1s weighted by prob of
picking it (not prob of being in same
cluster)

Consider close-packed data
6, picks 6, , so that 6, =6,

6, can pick 6, or 6, equally, will send *‘halt-
welghted” message to each

x; 1s weighted half as much as it should be



Conclusions

e EP with factorized approximation can give
rough estimate faster than Gibbs

e Estimating hyperparameters 1s very easy

e But for high accuracy or high dimension,
Gibbs 1s still method of choice



Suggestions for improvement

e The Dirichlet recursion can be written 1n different
ways
— But doesn’t seem to help

e Posterior can be represented in terms of
assignment variables, instead of parameters

e Approximation can be tree-structured instead of
factorized (NIPS’03), allowing equality
constraints to be remembered

— Structure of tree must be learned from data



