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A common situation

 You have a dataset
« Some models in mind
« Want to fit many different models to the data



Model-based psychometrics

Yii ~ f(y|0’i,,8j,9)

Subjectsi=1,...,N
Questions j=1,...,J
a,.= subject effect

B, = question effect

8 = other parameters



The problem

* Inference code is difficult to write

* As a result:
— Only a few models can be tried
— Code runs too slow for real datasets
— Only use models with available code

« How to get out of this dilemma?
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Infer.NET: An inference compiler

You specify a statistical model

It produces efficient code to fit the model to
data

Multiple inference algorithms available:
— Variational message passing

— Expectation propagation
— Gibbs sampling (coming soon)
User extensible

infer.net
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Infer.NET: An inference compiler

* A compiler, not an application
* Model can be written in any .NET language
(C++, C#, Python, Basic,...)

— Can use data structures, functions of the parent
language (jagged arrays, if statements, ...)

« Generated inference code can be embedd~4.in
a larger program

* Freely available at:

http://research.microsoft.com/infernet infer.net




Papers using Infer.NET

Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, Anindya Banerjee,
“Merlin: Specification Inference for Explicit Information Flow Problems”,
Prog. Language Design and Implementation, 2009

Vincent Y. F. Tan, John Winn, Angela Simpson, Adnan Custovic, “i/mmune
System Modeling with Infer. NET”, IEEE International Conference on e-
Science, 2008

David Stern, Ralf Herbrich, Thore Graepel, “Matchbox: Large Scale
Online Bayesian Recommendations”, WWW 2009

Kuang Chen, Harr Chen, Neil Conway, Joseph M. Hellerstein, Tapan S.
Parikh, “Usher: Improving Data Quality With Dynamic Forms”, ICTD 2009



Variational Bayesian inference

* True posterior is approximated by a simpler
distribution (Gaussian, Gamma, Beta, ...)

— “Point-estimate plus uncertainty”
— Halfway between maximume-likelihood and sampling

P

g
p=true
JN g=approx



Variational Bayesian inference

» Let variables be x,...., x;

* For each x, pick an approximating family  ¢(x,)
(Gaussian, Gamma, Beta, ...)

* Find the joint distribution  g(x) = |_| g(x,)

that minimizes the divergence
KL(Q(X) ” p(x | data )) (or other error measure)



Variational Bayesian inference

» Well-suited to large datasets, sequential
processing (in style of Kalman filter)

* Provides Bayesian model score
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Implementation

« Convert model into factor graph
* Pass messages on the graph until convergence

P12 = p(y, 12, 3,) p (v, 12, %) ‘

[

[
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Further reading

C. Bishop, Pattern Recognition and Machine
Learning. Springer, 2006.

T. Minka, “Divergence measures and message
passing,” Microsoft Tech. Rep., 2005.

T. Minka & J. Winn, “Gates,” NIPS 2008.

M.J. Beal & Z. Ghahramani, “The Variational
Bayesian EM Algorithm for Incomplete Data: with
Application to Scoring Graphical Model Structures,”
Bayesian Statistics 7, 2003.



Example: Cognitive Diagnosis
Models (DINA,NIDA)

B. W. Junker and K. Sijtsma, “Cognitive Assessment
Models with Few Assumptions, and Connections with
Nonparametric ltem Response Theory,” Applied
Psychological Measurement 25: 258-272 (2001)
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y; =1 if student i answered question j correctly (observed)
If question j requires skill k (known)
qu =1 if student i has skill k (latent)
hasSkill , =1
hasSkill , ~ Bernoulli ( pSkill )

 DINA model: K+2J parameters

hasSkills , = |_| hasSkill , ** (student possesses all skills for question)
k

hasSkills i 1-hasSkills i

p(y;, =D =0~-slip;) guess

* NIDA model: K+2K parameters

exhibitsSk ill, = (1 - slip )"**"* gyess '™

p(y;, =1) = |_| exhibitsSk ill, "
k



Graphical model

(per student)

Linkage depends on the Q matrix



Prior work

« Junker & Sijtsma (2001), Anozie & Junker
(2003) found that MCMC was effective but slow
fo converge

* Ayers, Nugent & Dean (2008) proposed
clustering as fast alternative to DINA model

« What about variational inference?



DINA,NIDA models in Infer.NET

« Each model is approx 50 lines of code

» Tested on synthetic data generated from the
models
— 100 students, 100 questions, 10 skills
— Random question-skill matrix
— Each question required at least 2 skills

 Infer.NET used Expectation Propagation (EP) with
Beta distributions for parameter posteriors

— Variational Message Passing gave similar results on
DINA, couldn’t be applied to NIDA
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Comparison to BUGS

* EP results compared to 20,000 samples from
BUGS

* For estimating posterior means, EP is as
accurate as 10,000 samples, for same cost as
100 samples

—l.e. 100x faster
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DINA model on DINA data
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NIDA model on NIDA data
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 Correct generative model is chosen in each case
* DINA model is better at fitting NIDA data than vice versa
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Code for DINA model

usi ng (Vari abl e. For Each(student)) {
usi ng (Vari abl e. For Each(question)) {
Vari abl eArray<bool > hasSkills =
Vari abl e. Subarray(hasSki | | [ student], skill sRequiredForQuestion[question]);
Vari abl e<bool > hasAl I Skills = Vari abl e. All True(hasSkills);
using (Variable.lf(hasAl Skills)) {
responses| student][question] = !Variable.Bernoulli(slip[question]);
}
using (Variable.lfNot(hasA ISkills)) {
responses| student][question] = Variabl e.Bernoul li (guess[question]);
}
}
}
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Code for NIDA model

usi ng (Vari abl e. For Each(ski || For Question)) {
using (Variable.lf(hasSkills[skillForQuestion])) {
showsSki I | [ skil |l For Question] = !Variable.Bernoulli(slipSkill[skillForQuestion]);
}
using (Variable.lfNot(hasSkills[skillForQuestion])) {
showsSki I | [ skil | For Question] = Variable.Bernoulli(guessSkill[skill ForQuestion]);

}
}

responses|[ student][question] = Variable. Al True(showsSkill);



Example: Latent class models for
diary data

F. Rijmen and K. Vansteelandt and P. De Boeck, “Latent
class models for diary method data: parameter estimation
by local computations,” Psychometrika, 73, 167-182 (2008)
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Diary data

« Patients assess their emotional state over time (Rijmen et al
2008, PMKA)

- vy, =lif subjectiattime t feels emotion j (observed)

Basic Hidden Markov model:
« z, U{l,..., Slis hidden state of subject i at time t (latent)

e a e a S? transition parameters

JS observation parameters
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Prior work

* Rijmen et al (2008) used maximume-likelihood
estimation of HMM parameters

— model selection was an open issue

« Which model gets highest score from
variational Bayes?



* Model is approx 70 lines of code

HMM in Infer.NET

« Can vary:
— number of latent classes (S)
— whether states are independent or Markov
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Best model is Markov
with 12 latent classes
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Hierarchical HMM

 Real data has more structure than HMM

« 32 subjects were observed over 7 days,
having 9 observations per day
— Basic HMM treated each day independently
* Rijmen et al (2008) proposed switching
between different HMMs on different days
(hierarchical HMM)

— more model selection issues
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Hierarchical HMM in Infer.NET

 Model

Is approx 100 lines of code

« Can additionally vary:
— number of HMMs (1,3,5,7,9)

— whet
— whet
— whet

ner days are independent or Markov
ner transition params depend on day

ner observation params depend on day

» Best model among 400 combinations
(2 hours using VMP):

— 5 HMMs, each having 5 latent states
— Observation params depend on day, but

transition params do not
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Summary

* Infer.NET allowed 4 custom models to be
implemented in a short amount of time

» Resulting code was efficient enough to
process large datasets, compare many
models

 Variational inference is potential replacement
for sampling in DINA,NIDA models

http://research.microsoft.com/infernet
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