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Overview

Each factor 1s approximated by a tree

More accurate than loopy belief
propagation, for small extra cost

Analogous to structured mean-field (but
cheaper, more accurate)

Behaves differently than clustering (GBP)



EP vs mean-field

Both approximate complex distribution (p)
with simpler distribution (q)

Mean-field minimizes “exclusive’ KL-

divergence: min_ KL(ql p)

EP minimizes "inclusive’ KL-divergence:
min, KL(p |l q)

Inclusive gives more accurate expectations



Related work

Structured mean-field
— (Ghahramani & Jordan, 1997) (Wiegerinck, 2000)

Tree-structured upper bounds
— (Wainwright et al, 2002)

Tree-based scheduling for BP
— (Wainwright et al, 2001)

Tree-structured assumed-density filtering
— (Frey et al, 2000)

Expectation propagation
_ (Minka, 2001)



EP 1n a nutshell

e Approximate a function by a simpler one:

px) =[]/ - g =[]f®

e Where each fa (x) lives 1n tractable family

* Factors f (x) can be conditional
distributions in a Bayesian network, or
potentials in Markov network



EP algorithm

e Iterate the fixed-point equations:

£, (x) =argmin D(f,(x)g" (x) I f,(X)g" (x))

where ¢ (x) =[] f,(®)

b+a

e Coordinated local approximations



Boltzmann machines

Joint distribution 1s product of pair potentials:

px) =[] . - g =[]f&®

Want to approximate by a simpler distribution
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Approximations

e BP (= factorized EP)
gx)=]] a(x)

e TreeEP

H( -k)eTq(xj9xk)
q(x) ==
[ aGx)




Approximating an edge by a tree

Each potential 1n p 1s projected onto the tree-structure of q

~ 14 ~ 24 ~ 34
£ (x,x)f, (x,x)f,7 (x5,x,)

(X, x) = ~ >
Jol T

Correlations are not lost, but projected onto the tree



Fixed-point equations

e Match single and pairwise marginals of

Xy
£,(x)g"“ (x) f,(x)g" (x)
X, and

e Reduces to exact inference on single loops

— Use cutset conditioning



Full algorithm

Loop off-tree edges a
Deletion: divide ¢(x)/ f,(x) to get ¢'“(x)

. q(x;,x;)
q\ (xj’xk): il (],k)ET
X

Incorporate evidence: exact inference
on f,(x)g"(x) to get g(x)

Update: divide ¢(x)/¢"(x) to get 7 (x)
q(x;, %)

q (x s X )

folxx) == (J,k)eT




Choosing structure

e Spanning tree with maximum pairwise
information (Chow & Liu)

p(x;,x;.)
p(x;)p(x;)

I(xjx)=),  p(x;x)log

e Pairwise marginals estimated by

p(xj’xk)zHafa(xj’xk)



Experiments

e All algorithms implemented in Matlab using
Bayes Net Toolbox

* Floating-point operations (FLOPS) counted
via Lightspeed toolbox

* 5% rule: stop when error on all following
iterations 1s within 5% of final error



Other algorithms

 TreeVB (Wiegerinck, 2000) with same tree
structure as TreeEP, same junction tree
optimizations

e BP used GBP code with no clusters (can
also use TreeEP code with empty tree)

— Probably not the most efficient implementation

— Used largest step size that gave convergence on
each network



Random potentials

* Single-node potentials:
f.(x)=lexp®)) exp(-6)] 6, ~ N,

e Pairwise potentials:

exp(w,) exp(-w,)

exp(_wjk) exp(wjk)

fa<xj,xk>={ } w, ~N(0,J?)



Generalized Belietf Propagation

A tamily of algorithms, depending on what
clusters you choose

For grids, clusters were 4-node loops

For complete graphs, clusters were all 3-
node loops

— Probably not the best choice

Used parent-child algorithm, with 0.5
damping, from Yedidia et al (2002)



Results

e TreeEP more accurate than BP, faster than
TreeVB and GBP

* GBP with right clusters 1s best on grids

— But extra edges can ruin its performance

e GBP with ° wrong’ clusters can be worse
than BP



Open questions

e What networks are best suited to TreeEP?
— Probably not grids, complete graphs
— Small tree-width?

 What 1s best way to choose structure?
— Needed for TreeEP, TreeVB, GBP



