Example

Data model

\[p(y|x) = \frac{1}{2} \mathcal{N}(y; x, 1) + \frac{1}{2} \mathcal{N}(y; 0, 10) \]

Typical data

ADF posterior for three orderings of same data:

True \(x = 2 \)

20 data points

ADF is sensitive to ordering

Can we make ADF independent of ordering?
Data model

\[p(y|x) = \frac{1}{2} \mathcal{N}(y; x, 1) + \frac{1}{2} \mathcal{N}(y; 0, 10) \]

Typical data

EP posterior at convergence

Other methods

All independent of data ordering
Performance

Data size n=20

ADF = first ‘x’ of EP
VB = variational bound

Deterministic methods improve with more data
(posterior is more Gaussian)
Sampling methods do not care
Bayes point machine

Bayesian approach to linear classification

Use \(w \) to classify \(x \):

\[
\begin{align*}
 w^T x_i & > 0 \quad \text{(class 1)} \\
 w^T x_i & < 0 \quad \text{(class 2)}
\end{align*}
\]

\[
p(w, D) = p(w) \prod_i p(y_i | x_i, w)
\]

\(p(w) \) is uniform

\[
p(y|x, w) = \Theta(yw^T x) = \begin{cases}
1 & \text{if } w \text{ is a perfect separator} \\
0 & \text{otherwise}
\end{cases}
\]

Classify a new data point by voting:

\[
p(y|x, D) = \int w \ p(y|x, w) p(w|D) dw
\]

\[
y = E[\text{sign}(w^T x)|D] \approx \text{sign}(E[w|D]^T x)
\]

\(E[w|D] \) is the Bayes Point
Bayes point machine example

SVM → Maximize margin
(distance to closest data point)

Bayes → Vote all perfect separators
Performance of EP

Billiard = Monte Carlo

Opper&Winther’s algs:
MF = mean–field theory
TAP = cavity method
(equiv to Gaussian EP)
Gaussian kernels

Map data into high dimensional space so that

\[\phi(x_i) \T \phi(x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]

SVM boundaries are more contrived, sensitive to kernel
Kernel selection

SVM and EP have similar boundaries, but prefer different kernels

<table>
<thead>
<tr>
<th>Kernel</th>
<th>R^2/ρ^2</th>
<th>log($p(D)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma = 0.08$</td>
<td>18</td>
<td>-39</td>
</tr>
<tr>
<td>$\sigma = 0.6$</td>
<td>108</td>
<td>-19</td>
</tr>
<tr>
<td>quadratic</td>
<td>656</td>
<td>-16</td>
</tr>
</tbody>
</table>