
On the Balcony

From automatic
differentiation to message
passing

Tom Minka

Microsoft Research

What I do

Algorithms for probabilistic inference
• Expectation Propagation
• Non-conjugate variational message

passing
• A* sampling

Probabilistic
Programming

TrueSkill

On the Balcony

• A machine learning language
should (among other things)
simplify implementation of
machine learning algorithms

Machine Learning Language

On the Balcony

• A general-purpose machine
learning language should
(among other things) simplify
implementation of all machine
learning algorithms

Machine Learning Language

On the Balcony

1. Automatic Differentiation

2. AutoDiff lacks approximation

3. Message passing generalizes
AutoDiff

4. Compiling to message passing

Roadmap

1. Automatic / algorithmic
differentiation

• “Evaluating derivatives” by Griewank
and Walther (2008)

Recommended reading

• Programs can specify mathematical
functions more compactly than formulas

• Program is not a black box: undergoes
analysis and transformation

• Numbers are assumed to have infinite
precision

Programs are the new formulas

• As formulas:

• 𝑓 = ς𝑖 𝑥𝑖

• 𝑑𝑓 = σ𝑖 𝑑𝑥𝑖ς𝑗≠𝑖 𝑥𝑗

Multiply-all example

Multiply-all example

Input program

c[1] = x[1]
for i = 2 to n

c[i] = c[i-1]*x[i]
f = c[n]

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
df = dc[n]

𝑓 =ෑ

𝑖

𝑥𝑖 𝑑𝑓 =෍

𝑖

𝑑𝑥𝑖ෑ

𝑗≠𝑖

𝑥𝑗

• Execution

• Replace every operation with a
linear one

• Accumulation

• Collect linear coefficients

Phases of AD

Execution phase

x y

*

z

*

+

dx dy dz

+

y x z y

++

dx*y + x*dy + dy*z + y*dzx*y + y*z

1 1

Scale
factors

Accumulation phase

dx dy dz

+

y x z y

++

dx*y + x*dy + dy*z + y*dz

1 1

coefficient of dx = 1*y

coefficient of dy = 1*x + 1*z

coefficient of dz = 1*y

Gradient vector = (1*y, 1*x + 1*z, 1*y)

(Forward)

(Reverse)

Linear composition

x y z

+

a b c d

++

e*(a*x + b*y) + f*(c*y + d*z)

e f

(e*a)*x +

(e*b + f*c)*y +

(f*d)*ze

e*a

f

f*d

f*ce*b

Dynamic programming

x y

a b

e f
e

(e+f)*a

f

(e+f)*b

• Reverse accumulation
is dynamic
programming

• Backward message is
sum over paths to
output

• Tracing approach builds a
graph during execution
phase, then accumulates it

• Source-to-source produces a
gradient program matching
structure of original

Source-to-source translation

Multiply-all example

Input program

c[1] = x[1]
for i = 2 to n

c[i] = c[i-1]*x[i]
return c[n]

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
return dc[n]

c[i-1] x[i]

c[i]

*

dc[i-1] dx[i]

dc[i]

+
c[i-1]x[i]

Multiply-all example

Gradient program

dcB[n] = 1
for i = n downto 2

dcB[i-1] = dcB[i]*x[i]
dxB[i] = dcB[i]*c[i-1]

dxB[1] = dcB[1]
return dxB

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
return dc[n]

dc[i-1] dx[i]

dc[i]

+
c[i-1]x[i] dxB[i]dcB[i-1]

dcB[i]

General case

c = f(x,y)

dc = df1(x,y) * dx + df2(x,y) * dy

dxB = dcB * df1(x,y)
dyB = dcB * df2(x,y)

dx dy

dc

+
df2df1 dyBdxB

dcB

• If a variable is read multiple times, we
need to add its backward messages

• Non-incremental approach:
transform program so that each
variable is defined and used at most
once on every execution path

Fan-out

Fan-out example

Input program

a = x * y
b = y * z
c = a + b

Edge program

(y1,y2) = dup(y)
a = x * y1
b = y2 * z
c = a + b

Gradient program

aB = cB
bB = cB
y2B = bB * z
y1B = aB * x
yB = y1B + y2B
…

y

y1 y2

y

dup

Summary of AutoDiff

AD Message passing

Programs not formulas Yes Yes

Graph structure / sparsity Yes Yes

Source-to-source Yes Yes

Only one execution path Yes Not always

Single forward-backward sweep Yes Not always

Exact Yes Not always

2. AutoDiff lacks
approximation

• Mini-batching

• User changes input
program to be
approximate, then
computes exact
gradient

Approximate gradients for big models

∇෍

𝑖=1

𝑛

𝑓𝑖 𝜃 ≈

∇
𝑛

𝑚
෍

𝑠~(1:𝑛)

𝑓𝑠(𝜃) =

𝑛

𝑚
෍

𝑠~(1:𝑛)

∇𝑓𝑠(𝜃) (AutoDiff)

1. Approximate the marginal log-
likelihood with a lower bound

2. Approximate the lower bound
by importance sampling

3. Compute exact gradient of
approximation

Black-box variational inference

∫ 𝑝 𝑥, 𝐷 𝑑𝑥
≥ −𝐾𝐿 𝑞 | 𝑝)

• AutoDiff can mechanically derive reverse summation
algorithms for tractable models

• Markov chains, Bayesian networks (Darwiche, 2003)

• Generative grammars, Parse trees (Eisner, 2016)

• Posterior expectations are derivatives of marginal
log-likelihood, which can be computed exactly

• User must provide forward summation algorithm

AutoDiff in Tractable Models

𝑆 → 𝐴𝐴

𝐴 → 𝐴𝐵 𝐴

𝐴 𝐵

• Approximation is useful in tractable models

• Sparse forward-backward (Pal et al, 2006)

• Beam parsing (Goodman, 1997)

• Cannot be obtained through AutoDiff of an
approximate model

• Neither can Viterbi

Approximation in Tractable Models

• Expectations

• Fixed-point iteration

• Optimization

• Root finding

• Should all be natively supported

MLL should facilitate approximations

3. Message-passing
generalizes autodiff

• Approximate reasoning about exponential state
space of a program, along all execution paths

• Propagates state summaries in both directions

• Forward can depend on backward and vice
versa

• Iterate to convergence

Message-passing

• What is largest and smallest value
each variable could have?

• Each operation in program is
interpreted as a constraint between
inputs and output

• Propagates information forward and
backward until convergence

Interval constraint propagation

Find (𝑥, 𝑦) that satisfies 𝑥2 + 𝑦2 = 1
and 𝑦 = 𝑥2

Circle-parabola example

Circle-parabola program

Input program

y = x^2
yy = y^2
z = y + yy
assert(z == 1)

x

y yy

z

Interval propagation program

Edge program

y = x^2
(y1,y2) = dup(y)
yy = y1^2
z = y2 + yy
assert(z == 1)

y1

y2

Input program

y = x^2

yy = y^2
z = y + yy
assert(z == 1)

y

yy

x

z

dup ^2

+

^2

Interval propagation program

Message program
Until convergence:

yF = xF^2
y1F = yF ∩ y2B
y2F = yF ∩ y1B
yyF = y1F^2
y1B = sqrt(y1F, yyB)
y2B = zB – yyF
yyB = zB – y2F
zB = [1,1]

Edge program

y = x^2
(y1,y2) = dup(y)

yy = y1^2

z = y2 + yy

assert(z == 1)

y1F

y1B

y1

y2

y

yy

x

z

dup ^2

+

^2

Running ^2 backwards

y1B = sqrt(y1F, yyB)
= project[y1F ∩ sqrt(yyB)]

y1F

y1B

y1

yy

^2

yy = y1^2

yyB = [1, 4]
sqrt(yyB) = [-2, -1] ∪ [1, 2]
y1F = [0, 10]
y1F ∩ sqrt(yyB) = [] ∪ [1, 2]
project[y1F ∩ sqrt(yyB)] = [1, 2]
y1F ∩ project[sqrt(yyB)] = [0, 2]

• If all intervals start (−∞,∞)
then 𝑥 → −1,1
(overestimate)

• Apply subdivision

• Starting at 𝑥 = (0.1,1) gives
𝑥 → (0.786, 0.786)

Results

Interval propagation program

yF = xF^2
zB = [1,1]

Until convergence:
(perform updates)

yB = y1B ∩ y2B
xB = sqrt(xF, yB)

Until convergence:
yF = xF^2
xB = sqrt(xF, yB)
yB = y1B ∩ y2B
y1F = yF ∩ y2B
y2F = yF ∩ y1B
…
zB = [1,1]

y1

y2

y

yy

x

z

dup ^2

+

^2

1. Pass messages into the loopy
core

2. Iterate

3. Pass messages out of the loopy
core

Analogous to Stan’s “transformed
data” and “generated quantities”

Typical message-passing program

• Message dependencies dictate execution

• If forward messages do not depend on
backward, becomes non-iterative

• If forward messages only include single
state, only one execution path is explored

• AutoDiff has both properties

Simplifications of message-passing

Other message-passing algorithms

• Probabilistic programs are the
new Bayesian networks

• Using a program to specify a
probabilistic model

• Program is not a black box:
undergoes analysis and
transformation to help inference

Probabilistic Programming

• Loopy belief propagation has same structure as
interval propagation, but using distributions

• Gives forward and backward summations for tractable
models

• Expectation propagation adds projection steps

• Approximate expectations for intractable models

• Parameter estimation in non-conjugate models

Loopy belief propagation

• Parameters send current value
out, receive gradients in, take a
step

• Gradients fall out of EP equations

• Part of the same iteration loop

Gradient descent

θ

𝜃 ∇𝑓(𝜃)

𝑓(𝜃)

• Variables send current value
out, receive conditional
distributions in

• Collapsed variables
send/receive distributions as in
BP

• No need to collapse in the model

Gibbs sampling

x

y

𝑝(𝑥)

𝑝(𝑦 = 𝑦𝑡|𝑥)

𝑦𝑡

𝑥𝑡

𝑝(𝑦|𝑥 = 𝑥𝑡)

On the Balcony
Thanks!

Model-based machine learning book: http://mbmlbook.com/
Infer.NET is open source: http://dotnet.github.io/infer

http://mbmlbook.com/
http://dotnet.github.io/infer

