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What I do

Algorithms for probabilistic inference
• Expectation Propagation
• Non-conjugate variational message 

passing
• A* sampling

Probabilistic
Programming

TrueSkill



On the Balcony

• A machine learning language 
should (among other things) 
simplify implementation of 
machine learning algorithms

Machine Learning Language



On the Balcony

• A general-purpose machine 
learning language should 
(among other things) simplify 
implementation of all machine 
learning algorithms

Machine Learning Language



On the Balcony

1. Automatic Differentiation

2. AutoDiff lacks approximation

3. Message passing generalizes 
AutoDiff

4. Compiling to message passing

Roadmap



1. Automatic / algorithmic 
differentiation



• “Evaluating derivatives” by Griewank
and Walther (2008)

Recommended reading



• Programs can specify mathematical 
functions more compactly than formulas

• Program is not a black box: undergoes 
analysis and transformation

• Numbers are assumed to have infinite 
precision

Programs are the new formulas



• As formulas:

• 𝑓 = ς𝑖 𝑥𝑖

• 𝑑𝑓 = σ𝑖 𝑑𝑥𝑖ς𝑗≠𝑖 𝑥𝑗

Multiply-all example



Multiply-all example

Input program

c[1] = x[1]
for i = 2 to n

c[i] = c[i-1]*x[i]
f = c[n]

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
df = dc[n]

𝑓 =ෑ

𝑖

𝑥𝑖 𝑑𝑓 =෍

𝑖

𝑑𝑥𝑖ෑ

𝑗≠𝑖
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• Execution

• Replace every operation with a 
linear one

• Accumulation

• Collect linear coefficients

Phases of AD



Execution phase
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Scale 
factors



Accumulation phase

dx dy dz

+

y x z y

++

dx*y + x*dy + dy*z + y*dz

1 1

coefficient of dx = 1*y

coefficient of dy = 1*x  +  1*z

coefficient of dz = 1*y

Gradient vector = (1*y, 1*x + 1*z, 1*y)

(Forward)

(Reverse)



Linear composition

x y z

+

a b c d

++

e*(a*x + b*y) + f*(c*y + d*z)

e f

(e*a)*x +

(e*b + f*c)*y +

(f*d)*ze

e*a

f

f*d

f*ce*b



Dynamic programming

x y

a b

e f
e

(e+f)*a

f

(e+f)*b

• Reverse accumulation 
is dynamic 
programming

• Backward message is 
sum over paths to 
output



• Tracing approach builds a 
graph during execution 
phase, then accumulates it

• Source-to-source produces a 
gradient program matching 
structure of original

Source-to-source translation



Multiply-all example

Input program

c[1] = x[1]
for i = 2 to n

c[i] = c[i-1]*x[i]
return c[n]

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
return dc[n]

c[i-1] x[i]

c[i]

*

dc[i-1] dx[i]

dc[i]

+
c[i-1]x[i]



Multiply-all example

Gradient program

dcB[n] = 1
for i = n downto 2

dcB[i-1] = dcB[i]*x[i]
dxB[i] = dcB[i]*c[i-1]

dxB[1] = dcB[1]
return dxB

Derivative program

dc[1] = dx[1]
for i = 2 to n

dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]
return dc[n]

dc[i-1] dx[i]

dc[i]

+
c[i-1]x[i] dxB[i]dcB[i-1]

dcB[i]



General case

c = f(x,y)

dc = df1(x,y) * dx + df2(x,y) * dy

dxB = dcB * df1(x,y)
dyB = dcB * df2(x,y)

dx dy

dc

+
df2df1 dyBdxB

dcB



• If a variable is read multiple times, we 
need to add its backward messages

• Non-incremental approach: 
transform program so that each 
variable is defined and used at most 
once on every execution path

Fan-out



Fan-out example

Input program

a = x * y
b = y * z
c = a + b

Edge program

(y1,y2) = dup(y)
a = x * y1
b = y2 * z
c = a + b

Gradient program

aB = cB
bB = cB
y2B = bB * z
y1B = aB * x
yB = y1B + y2B
…

y

y1 y2

y

dup



Summary of AutoDiff

AD Message passing

Programs not formulas Yes Yes

Graph structure / sparsity Yes Yes

Source-to-source Yes Yes

Only one execution path Yes Not always

Single forward-backward sweep Yes Not always

Exact Yes Not always



2. AutoDiff lacks 
approximation



• Mini-batching

• User changes input 
program to be 
approximate, then 
computes exact 
gradient

Approximate gradients for big models

∇෍
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∇𝑓𝑠(𝜃) (AutoDiff)



1. Approximate the marginal log-
likelihood with a lower bound

2. Approximate the lower bound 
by importance sampling

3. Compute exact gradient of 
approximation

Black-box variational inference

∫ 𝑝 𝑥, 𝐷 𝑑𝑥
≥ −𝐾𝐿 𝑞 | 𝑝)



• AutoDiff can mechanically derive reverse summation 
algorithms for tractable models 

• Markov chains, Bayesian networks (Darwiche, 2003)

• Generative grammars, Parse trees (Eisner, 2016)

• Posterior expectations are derivatives of marginal 
log-likelihood, which can be computed exactly

• User must provide forward summation algorithm

AutoDiff in Tractable Models

𝑆 → 𝐴𝐴

𝐴 → 𝐴𝐵 𝐴

𝐴 𝐵



• Approximation is useful in tractable models 

• Sparse forward-backward (Pal et al, 2006)

• Beam parsing (Goodman, 1997)

• Cannot be obtained through AutoDiff of an 
approximate model

• Neither can Viterbi

Approximation in Tractable Models



• Expectations

• Fixed-point iteration

• Optimization 

• Root finding

• Should all be natively supported

MLL should facilitate approximations



3. Message-passing 
generalizes autodiff



• Approximate reasoning about exponential state 
space of a program, along all execution paths

• Propagates state summaries in both directions

• Forward can depend on backward and vice 
versa

• Iterate to convergence

Message-passing



• What is largest and smallest value 
each variable could have?

• Each operation in program is 
interpreted as a constraint between 
inputs and output

• Propagates information forward and 
backward until convergence

Interval constraint propagation



Find (𝑥, 𝑦) that satisfies 𝑥2 + 𝑦2 = 1
and 𝑦 = 𝑥2

Circle-parabola example



Circle-parabola program

Input program

y = x^2
yy = y^2
z = y + yy
assert(z == 1)

x

y yy

z



Interval propagation program

Edge program

y = x^2
(y1,y2) = dup(y)
yy = y1^2
z = y2 + yy
assert(z == 1)

y1

y2

Input program

y = x^2

yy = y^2
z = y + yy
assert(z == 1)

y

yy

x

z

dup ^2

+

^2



Interval propagation program

Message program
Until convergence:

yF = xF^2
y1F = yF ∩ y2B
y2F = yF ∩ y1B
yyF = y1F^2
y1B = sqrt(y1F, yyB)
y2B = zB – yyF
yyB = zB – y2F
zB = [1,1]

Edge program

y = x^2
(y1,y2) = dup(y)

yy = y1^2

z = y2 + yy

assert(z == 1)

y1F

y1B

y1

y2

y

yy

x

z

dup ^2

+

^2



Running ^2 backwards

y1B = sqrt(y1F, yyB)
= project[ y1F ∩ sqrt(yyB) ] 

y1F

y1B

y1

yy

^2

yy = y1^2

yyB = [1, 4]
sqrt(yyB) = [-2, -1] ∪ [1, 2]
y1F = [0, 10]
y1F ∩ sqrt(yyB) = [] ∪ [1, 2]
project[ y1F ∩ sqrt(yyB) ] = [1, 2]
y1F ∩ project[ sqrt(yyB) ] = [0, 2]



• If all intervals start (−∞,∞)
then 𝑥 → −1,1
(overestimate)

• Apply subdivision

• Starting at 𝑥 = (0.1,1) gives 
𝑥 → (0.786, 0.786)

Results



Interval propagation program

yF = xF^2
zB = [1,1]

Until convergence:
(perform updates)

yB = y1B ∩ y2B 
xB = sqrt(xF, yB)

Until convergence:
yF = xF^2
xB = sqrt(xF, yB)
yB = y1B ∩ y2B
y1F = yF ∩ y2B
y2F = yF ∩ y1B
…
zB = [1,1]

y1

y2

y

yy

x

z

dup ^2

+

^2



1. Pass messages into the loopy 
core

2. Iterate

3. Pass messages out of the loopy 
core

Analogous to Stan’s “transformed 
data” and “generated quantities” 

Typical message-passing program



• Message dependencies dictate execution

• If forward messages do not depend on 
backward, becomes non-iterative

• If forward messages only include single 
state, only one execution path is explored

• AutoDiff has both properties

Simplifications of message-passing



Other message-passing algorithms



• Probabilistic programs are the 
new Bayesian networks

• Using a program to specify a 
probabilistic model

• Program is not a black box: 
undergoes analysis and 
transformation to help inference

Probabilistic Programming



• Loopy belief propagation has same structure as 
interval propagation, but using distributions

• Gives forward and backward summations for tractable 
models

• Expectation propagation adds projection steps

• Approximate expectations for intractable models

• Parameter estimation in non-conjugate models

Loopy belief propagation



• Parameters send current value 
out, receive gradients in, take a 
step

• Gradients fall out of EP equations

• Part of the same iteration loop

Gradient descent

θ

𝜃 ∇𝑓(𝜃)

𝑓(𝜃)



• Variables send current value 
out, receive conditional 
distributions in

• Collapsed variables 
send/receive distributions as in 
BP

• No need to collapse in the model

Gibbs sampling

x

y

𝑝(𝑥)

𝑝(𝑦 = 𝑦𝑡|𝑥)

𝑦𝑡

𝑥𝑡

𝑝(𝑦|𝑥 = 𝑥𝑡)



On the Balcony
Thanks!

Model-based machine learning book: http://mbmlbook.com/
Infer.NET is open source:  http://dotnet.github.io/infer

http://mbmlbook.com/
http://dotnet.github.io/infer

