From automatic
differentiation to message
passing

Tom Minka
Microsoft Research

What | do

Algorithms for probabilistic inference
* Expectation Propagation — Probabilistic
. _ Programming
* Non-conjugate variational message ‘
passing infer.net
 A* sampling

7\ XBOX leﬁit:e bEﬁng /jﬂzure

TrueSkill

Machine Learning Language

* A machine learning language
should (among other things)
simplity implementation of
machine learning algorithms

Machine Learning Language

* A general-purpose machine
learning language shoulo
(@among other things) simplity

mp

c

mnen

earning a

atior
gorl

of all machine

nms

Roadmap

1. Automatic Differentiation
2. AutoDift lacks approximation

3. Message passing generalizes
AutoDiff

4. Compiling to message passing

., W
ol @5
LY

1. Automatic / algorithmic
differentiation

Recommended reading

» “Evaluating derivatives” by Griewank
and Walther (2008)

Programs are the new formulas

* Programs can specity mathematical
functions more compactly than formulas

* Program is not a black box: undergoes
analysis and transtormation

. \Iumbers are assumed to have infinite
orecision

Multiply-all example

e As formulas:

Multiply-all example

Input program Derivative program
c[1] = x[1] dc[1] = dx[1]
fori=2ton fori=2ton
clil = c[i-1]*x[i] =) dc[i] = dc[i-1]*x]i] + c[i-1]*dx[i]
f=c[n] df = dc[n]

f=1_[xi df=dei1_[xj

J#I

Phases of AD

e EXxecution

 Replace every operation with a
linear one

e Accumulation

e (Collect linear coefficients

Execution phase

x*y + y*z

—

dx*y + x*dy + dy*z + y*dz

Scale
factors

Accumulation phase

dx*y + x*dy + dy*z + y*dz (Forward)

ONONO revers)
Yy X z 'y

coefficient of dx = 1*y

e 0 coefficient of dy = 1*x + 1%*z

coefficient of dz = 1*y

Gradient vector = (1*y, 1*x + 1*z, 1*y)

Linear composition

e*(a*x + b*y) + f*(c*y + d*z)

(e*a)*x +
(e*b + f*c)*y +

(f*d)*z

Dynamic programming

e Reverse accumulation
S dynamic

Orogramming cr\\s o/ e

» Backward message is / f \
sum over paths to
output

Source-to-source translation

» Tracing approach builds a
graph during execution
phase, then accumulates it

* Source-to-source produces a
gradient program matching
structure of original

Multiply-all example

Input program Derivative program
c[1] = x[1] dc[1] = dx[1]
fori=2ton fori=2ton
clil = c[i-1]*x[i] =) dc[i] = dc[i-1]*x]i] + c[i-1]*dx[i]
return c[n] return dc[n]

*

Multiply-all example

Derivative program Gradient program

dcB[n] =1

fori=n downto 2
dcBJ[i-1] = dcBJ[i] *x[i]
dxBl[i] = dcBJ[i]*c[i-1]
dxB[1] = dcB[1]

return dxB

dc[1] = dx[1]
fori=2ton

dcli] = dc[i-1]*x[i] + c[i-1]*dx[i]
return dc[n]

dcBli-1]

General case

c =f(x,y)
dc = dfl(x,y) * dx + df2(x,y) * dy

dxB = dcB * df1(x,y)
dyB = dcB * df2(x,y)

Fan-out

f a variable is read
need to add its bac

variable

Mul

KWa

Non-incremental approach:
transform program so that each
s defined and used at most

tiple times, we

'd messages

once on every execution path

Fan-out example

Input program Edge program Gradient program
a=x%*y (y1,y2) = dup(y) aB =cB
b=y *z ‘ a=x*yl ‘ bB =cB
c=a+b b=y2*z y2B=DbB * z
c=a+b y1B =aB * x
yB=y1B +y2B

: >\ yl y2

Summary of AutoDiff

Programs not formulas Yes Yes
Graph structure / sparsity Yes Yes
Source-to-source Yes Yes
Only one execution path Yes Not always
Single forward-backward sweep Yes Not always

Exact Yes Not always

LN
E@ @5
LY

UtoDiff lacks
) ?pprox'mahon

Approximate gradients for big models

* Mini-batching

» User changes input VEW}N
orogram to be v Z (6) =
approximate, then e

computes exact ES;MWS(H) (oDl
gradient

Black-box variational inference

1. Approximate the marginal log- [p(x, D)dx
ikelihood with a lower boun > —KL(q || p)

2. Approximate the lower bound
by importance sampling

3. Compute exact gradient of
approximation

AutoDiff in Tractable Models

AutoDiff can mechanically derive reverse summation
algorithms for tractable models

S - AA
. Markov chains, Bayesian networks (Darwiche, 2003) /\
A->AB A
. Generative grammars, Parse trees (Eisner, 2016) /\
A B

. Posterior expectations are derivatives of marginal
log-likelihood, which can be computed exactly

. User must provide forward summation algorithm

Approximation in Tractable Models

« Approximation is useful in tractable models
. Sparse forward-backward (Pal et al, 2006)

. Beam parsing (Goodman, 1997)

« (Cannot be obtained through AutoDiff of an
approximate model

e Neither can Viterbi

MLL should facilitate approximations

* bxpectations

* Fixed-point iteration
* Optimization
* Root finding

» Should all be natively supported

3. Message-passing
generalizes autodiff

Message-passing

* Approximate reasoning about exponential state
space of a program, along all execution paths

* Propagates state summaries in both directions

 Forward can depend on backward and vice
versa

* [terate to convergence

Interval constraint propagation

* Whatis largest and smallest value
each variable could have?

* Each operation in program is
interpreted as a constraint between
NPUTS and output

» Propagates information forward ana
backward until convergence

Circle-parabola example

Find (x, y) that satisfies x% + y* = 1
and y = x*

O L A
b \ /

_1 1 I
-1 -0.5 0 0.5 1

Circle-parabola program

Input program °

y =XN2

yy =y"2 OO
Z=y+yy

assert(z == 1) Q

Interval propagation program

Input program Edge program
y = x"2 y = x"2

- (y1,y2) = dup(y)
yy = y"2 yy = y1/72
Z=Y+Yyy Z=Yy2+yy

assert(z==1) assert(z==1)

Interval propagation program

Edge program Message program
Until convergence:
y = Xx"2 e YF = XFA2

(y1,y2) = dup(y) T:

Z=Yy2 +vVyy T:

assert(z==1)

vV1F=yF Ny2B
v2F=yFNylB

VYF = y1FA2

yv1B = sqrt(y1F, yyB)
y2B =zB —yyF

yyB =zB —y2F

zB =[1,1]

Running A2 backwards

yy=y1r2 == y1B=sqrt(ylF, yyB)
= project[y1F N sqrt(yyB)]

yyB =11, 4]

sqrt(yyB) = [-2,-1] U [1, 2]

v1F =10, 10]

y1F Nnsqrt(yyB) =[] U [1, 2]
project[y1F N sqgrt(yyB)] = [1, 2]
v1F N project[sqrt(yyB)] =[O, 2]

Results

f all intervals start (—oo, 00)
then x - (—1,1)
(overestimate)

Apply subdivision

Starting at x = (0.1,1) gives
x — (0.786,0.786)

0 | A
b \ /

_1 1 1
-1 -0.5 0 0.5 1

Interval propagation program

Until convergence: vF = xF/2)
vVF = xFA2 zB =[1,1]
xB = sqrt(xF, yB)
yB=y1B Ny2B Until convergence:
v1F =yF Ny2B (perform updates)

V2F=yFNylR ==
yB=ylB Ny2B
zB =[1,1] xB = sqrt(xF, yB)

Typical message-passing program

1. Pass messages into the loopy
core

2. |terate

3. Pass messages out of the loopy
core

Analogous to Stan's “transtormed
data” and “generated quantities”

Simplifications of message-passing

* Message dependencies dictate execution

» |t forward messages do not depend on
backward, becomes non-iterative

» [f forward messages only include single
state, only one execution path is explored

» AutoDift has both properties

Other message-passing algorithms

Probabilistic Programming

* Probabilistic programs are the
new Bayesian networks

 Using a program to specity a
orob%bi\%ticgmode\ PELLY

* Program is not a black box:
undergoes analysis and
transtormation to help inference

Loopy belief propagation

* Loopy belief propagation has same structure as
interval propagation, but using distributions

. Gives forward and backward summations for tractable
models

* Expectation propagation adds projection steps
. Approximate expectations for intractable models

. Parameter estimation in non-conjugate models

Gradient descent

» Parameters send current value
out, receive gradients in, take a

O
step 0 l? -

 Gradients fall out of EP equations £0)

» Part of the same iteration loop

Gibbs sampling

\/ariab\es.send current value -
out, receive qud|t|ona\ —
distributions in

xtl t p(Y = Ye|x)

Collapsed variables

sBePnd/receive distributions as in ytT lpmx:m

No need to collapse in the model

Thanks!

Model-based machine learning book: http://mbmlbook.com/
Infer.NET is open source: http://dotnet.github.io/infer

http://mbmlbook.com/
http://dotnet.github.io/infer

