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Abstract

This note derives a fast algorithm for maximume-likelihood estimation of both parameters of a Gamma
distribution or negative-binomial distribution.

1 Introduction

We have observed n independent data points X = [x;..x,] from the same density 6. We restrict 6 to the class of
Gamma densities, i.e. § = (a,b):

a—1

p(z|a,b) = Ga(z;a,b) = T(a)be exp(_f)

b

Figure 1: The Ga(3,2) density function.

Figure 1 plots a typical Gamma density. In general, the mean is ab and the mode is (a — 1)b.

2 Maximum likelihood

The log-likelihood is

1
logp(Dla,b) = (a— I)Zloga:i —nlogT'(a) — nalogb — szi (1)
= n(a— Dlogz —nlogT'(a) — nalogb — nz/b (2)

The maximum for b is easily found to be



_4 L
-4.5
— Exact
i — — Approx
Bound
-5.5
6L ) ) ) A
0 5 10 15 20

Figure 2: The log-likelihood (4) versus the Gamma-type approximation (9) and the bound (6) at conver-
gence. The approximation is nearly identical to the true likelihood. The dataset was 100 points sampled
from Ga(7.3,4.5).
Substituting this into (1) gives

logp(Dla,b) = n(a—1logz —nlog'(a) — nalogZ + naloga — na (4)
We will describe two algorithms for maximizing this function.

The first method will iteratively maximize a lower bound. Because aloga is convex, we can use a linear lower
bound:

(14 logap)(a — ap) + aglogag (5)
n(a — 1)logz — nlogT'(a) — nalogZ + n(1 + log ag)(a — ag) + nag logag — na (6)

aloga
log p(D|a, b)

The maximum is at

0 = nlogx —n¥(a) —nlogz+n(l+logay) —n (7)
U(a) = logz —logZ + logag (8)

where ¥ is the digamma function. The iteration proceeds by setting ag to the current a, then inverting the ¥
function to get a new a. Because the log-likelihood is concave, this iteration must converge to the (unique) global
maximum. Unfortunately, it can be quite slow, requiring around 250 iterations if a = 10, less for smaller a, and
more for larger a.

The second algorithm is much faster, and is obtained via ‘generalized Newton’ [1]. Using an approximation of
the form,

logp(Dla,b) =~ ¢+ cra+ calog(a) 9)
the update is
1 1  logz —logZ +loga— V¥(a)
_ 1 10
anew a + a?(1/a — ¥'(a)) (10)

This converges in about four iterations. Figure 2 shows that this approximation is very close to the true log-
likelihood, which explains the good performance.



A good starting point for the iteration is obtained via the approximation

1
logT'(a) =~ alog(a) —a— 3 log a + const. (Stirling) (11)
1
v ~ - — 12
(a) ~ los(a) ~ 5 (12
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(Note that logZ > log z by Jensen’s inequality.)

2.1 Negative binomial
The maximum-likelihood problem for the negative binomial distribution is quite similar to that for the Gamma.
This is because the negative binomial is a mixture of Poissons, with Gamma mixing distribution:
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Let’s consider a slightly generalized negative binomial, where the ‘waiting time’ for x is given by ¢:

p(zla,b) = / Po(x; \)Ga(\; a, b)d\ = e MbdA (14)
A

AD)* 3 AN
p(z[t,a,b) = Po(z; A\t)Ga(\; a,b)dA = e~ Md\ (16)
A
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Given a data set D = {(z;,1;)}, we want to estimate (a,b). One approach is to use EM, where the E-step infers
the hidden variable \;:

b
E[N] = (x;+a) T (18)
Ellog);] = 9Y(z; +a)+log — (19)
The M-step then maximizes
1
(a— l)zZ:E[log)\i} —nlogIT'(a) — nalogb — EE;EP”] (20)

which is a Gamma maximum-likelihood problem.
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