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Abstract

This note derives a fast algorithm for maximum-likelihood estimation of both parameters of a Gamma

distribution or negative-binomial distribution.

1 Introduction

We have observed n independent data points X = [x1..xn] from the same density θ. We restrict θ to the class of
Gamma densities, i.e. θ = (a, b):

p(x|a, b) = Ga(x; a, b) =
xa−1

Γ(a)ba
exp(−

x

b
)
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Figure 1: The Ga(3, 2) density function.

Figure 1 plots a typical Gamma density. In general, the mean is ab and the mode is (a − 1)b.

2 Maximum likelihood

The log-likelihood is

log p(D|a, b) = (a − 1)
∑

i

log xi − n log Γ(a) − na log b −
1

b

∑

i

xi (1)

= n(a − 1)log x − n log Γ(a) − na log b − nx̄/b (2)

The maximum for b is easily found to be

b̂ = x̄/a (3)
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Figure 2: The log-likelihood (4) versus the Gamma-type approximation (9) and the bound (6) at conver-
gence. The approximation is nearly identical to the true likelihood. The dataset was 100 points sampled
from Ga(7.3, 4.5).

Substituting this into (1) gives

log p(D|a, b̂) = n(a − 1)log x − n log Γ(a) − na log x̄ + na log a − na (4)

We will describe two algorithms for maximizing this function.

The first method will iteratively maximize a lower bound. Because a log a is convex, we can use a linear lower
bound:

a log a ≥ (1 + log a0)(a − a0) + a0 log a0 (5)

log p(D|a, b̂) ≥ n(a − 1)log x − n log Γ(a) − na log x̄ + n(1 + log a0)(a − a0) + na0 log a0 − na (6)

The maximum is at

0 = nlog x − nΨ(a) − n log x̄ + n(1 + log a0) − n (7)

Ψ(â) = log x − log x̄ + log a0 (8)

where Ψ is the digamma function. The iteration proceeds by setting a0 to the current â, then inverting the Ψ
function to get a new â. Because the log-likelihood is concave, this iteration must converge to the (unique) global
maximum. Unfortunately, it can be quite slow, requiring around 250 iterations if a = 10, less for smaller a, and
more for larger a.

The second algorithm is much faster, and is obtained via ‘generalized Newton’ [1]. Using an approximation of
the form,

log p(D|a, b̂) ≈ c0 + c1a + c2 log(a) (9)

the update is

1

anew
=

1

a
+

log x − log x̄ + log a − Ψ(a)

a2(1/a − Ψ′(a))
(10)

This converges in about four iterations. Figure 2 shows that this approximation is very close to the true log-
likelihood, which explains the good performance.
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A good starting point for the iteration is obtained via the approximation

log Γ(a) ≈ a log(a) − a −
1

2
log a + const. (Stirling) (11)

Ψ(a) ≈ log(a) −
1

2a
(12)

â ≈
0.5

log x − log x
(13)

(Note that log x ≥ log x by Jensen’s inequality.)

2.1 Negative binomial

The maximum-likelihood problem for the negative binomial distribution is quite similar to that for the Gamma.
This is because the negative binomial is a mixture of Poissons, with Gamma mixing distribution:

p(x|a, b) =

∫

λ

Po(x;λ)Ga(λ; a, b)dλ =

∫

λ

λx

x!
e−λ λa−1

Γ(a)ba
e−λ/bdλ (14)

=

(

a + x − 1
x

)(

b

b + 1

)x (

1 −
b

b + 1

)a

(15)

Let’s consider a slightly generalized negative binomial, where the ‘waiting time’ for x is given by t:

p(x|t, a, b) =

∫

λ

Po(x;λt)Ga(λ; a, b)dλ =

∫

λ

(λt)x

x!
e−λt λa−1

Γ(a)ba
e−λ/bdλ (16)

=

(

a + x − 1
x

) (

bt

bt + 1

)x (

1 −
bt

bt + 1

)a

(17)

Given a data set D = {(xi, ti)}, we want to estimate (a, b). One approach is to use EM, where the E-step infers
the hidden variable λi:

E[λi] = (xi + a)
b

bti + 1
(18)

E[log λi] = Ψ(xi + a) + log
b

bti + 1
(19)

The M-step then maximizes

(a − 1)
∑

i

E[log λi] − n log Γ(a) − na log b −
1

b

∑

i

E[λi] (20)

which is a Gamma maximum-likelihood problem.
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